Search results for: Kazakh speech dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1937

Search results for: Kazakh speech dataset

767 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
766 Contextual Paper on Green Finance: Analysis of the Green Bonds Market

Authors: Dina H. Gabr, Mona A. El Bannan

Abstract:

With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.

Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance

Procedia PDF Downloads 120
765 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
764 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 541
763 Identity Management in Virtual Worlds Based on Biometrics Watermarking

Authors: S. Bader, N. Essoukri Ben Amara

Abstract:

With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.

Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world

Procedia PDF Downloads 265
762 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
761 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
760 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 313
759 English Vowel Duration Affected by Voicing Contrast: A Cross Linguistic Examination of L2 English Production and Perception by Asian Learners of English

Authors: Nguyen Van Anh Le, Mafuyu Kitahara

Abstract:

In several languages, it is widely acknowledged that vowels are longer before voiced consonants than before voiceless ones such as English. However, in Mandarin Chinese, Vietnamese, Japanese, and Korean, the distribution of voiced-voiceless stop contrasts and long-short vowel differences are vastly different from English. The purpose of this study is to determine whether these targeted learners' L2 English production and perception change in terms of vowel duration as a function of stop voicing. The production measurements in the database of Asian learners revealed a distinct effect than the one observed in native speakers. There was no evident vowel lengthening patterns. The results of the perceptual experiment with 24 participants indicated that individuals tended to prefer voiceless stops when preceding vowels were shortened, but there was no statistically significant difference between intermediate, upper-intermediate, and advanced-level learners. However, learners demonstrated distinct perceptual patterns for various vowels and stops. The findings have valuable implications for L2 English speech acquisition. Keywords: voiced/voiceless stops, preceding vowel duration, voiced/voiceless perception, L2 English, L1 Mandarin Chinese, L1 Vietnamese, L1 Japanese, L1 Korean

Keywords: voiced/voiceless stops, preceding vowel duration, voiced/voiceless perception, L2 english

Procedia PDF Downloads 103
758 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
757 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
756 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
755 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects

Authors: Nazir Amir

Abstract:

Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.

Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore

Procedia PDF Downloads 304
754 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
753 Clique and Clan Analysis of Patient-Sharing Physician Collaborations

Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan

Abstract:

The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.

Keywords: clique, clan, electronic health records, physician collaboration

Procedia PDF Downloads 140
752 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 219
751 Maturity Transformation Risk Factors in Islamic Banking: An Implication of Basel III Liquidity Regulations

Authors: Haroon Mahmood, Christopher Gan, Cuong Nguyen

Abstract:

Maturity transformation risk is highlighted as one of the major causes of recent global financial crisis. Basel III has proposed new liquidity regulations for transformation function of banks and hence to monitor this risk. Specifically, net stable funding ratio (NSFR) is introduced to enhance medium- and long-term resilience against liquidity shocks. Islamic banking is widely accepted in many parts of the world and contributes to a significant portion of the financial sector in many countries. Using a dataset of 68 fully fledged Islamic banks from 11 different countries, over a period from 2005 – 2014, this study has attempted to analyze various factors that may significantly affect the maturity transformation risk in these banks. We utilize 2-step system GMM estimation technique on unbalanced panel and find bank capital, credit risk, financing, size and market power are most significant among the bank specific factors. Also, gross domestic product and inflation are the significant macro-economic factors influencing this risk. However, bank profitability, asset efficiency, and income diversity are found insignificant in determining the maturity transformation risk in Islamic banking model.

Keywords: Basel III, Islamic banking, maturity transformation risk, net stable funding ratio

Procedia PDF Downloads 416
750 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
749 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques

Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.

Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings

Procedia PDF Downloads 44
748 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 361
747 Increasing Health Education Tools Satisfaction in Nursing Staffs

Authors: Lu Yu Jyun

Abstract:

Background: Health education is important nursing work aiming to strengthen patients’ self-caring ability and family members. Our department educates through three methods, including speech education, flyer and demonstration video education. The satisfaction rate of health education tool use is 54.3% in nursing staff. The main reason is there hadn’t been a storage area for flyers, causing extra workload in assessing flyers. The satisfaction rate of health education in patients and families is 70.7%. We aim to improve this situation between 13th April and 6th June 2021. Method: We introduce the ECRS method to erase repetitive and redundant actions. We redesign the health education tool usage workflow to improve nursing staffs’ efficiency and further enhance nursing staffs care quality and working satisfaction. Result: The satisfaction rate of health education tool usage in nursing staff elevated from 54.3% to 92.5%. The satisfaction rate of health education in patients and families elevated from 70.7% to 90.2%. Conclusion: The assessment time of health care tools dropped from 10minutes to 3minutes. This significantly reduced the nursing staffs’ workload. 1213 paper is saved in one month and 14,556 a year in the estimate; we save the environment via this action. Health education map implemented in other nursing departments since October due to its’ high efficiency and makes health care tools more humanize.

Keywords: health, education tools, satisfaction, nursing staff

Procedia PDF Downloads 148
746 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
745 Trade-Offs between Verb Frequency and Syntactic Complexity in Children with Developmental Language Disorder

Authors: Pui I. Chao, Shanju Lin

Abstract:

Purpose: Children with developmental language disorder (DLD) have persistent language difficulties and often face great challenges when demands are high. The aim of this study was to investigate whether verb frequency would trade-off with syntactic complexity when they talk. Method: Forty-five children with DLD, 45 chronological age matches with TD (AGE), and 45 MLU-matches with TD (MLU) who were Mandarin speakers were selected from the previous study. Language samples were collected under three contexts: conversation about children’s family and school, story retelling, and free play. MLU, verb density, utterance length difference, verb density difference, and average verb frequency were calculated and further analyzed by ANOVAs. Results: Children with DLD and their MLU matches produced shorter utterances and used fewer verbs in expressions than the AGE matches. Compared to their AGE matches, the DLD group used more verbs and verbs with lower frequency in shorter utterances but used fewer verbs and verbs with higher frequency in longer utterances. Conclusion: Mandarin-speaking children with DLD showed difficulties in verb usage and were more vulnerable to trade-offs than their age-matched peers in utterances with high demand. As a result, task demand should be taken into account as speech-language pathologists assess whether children with DLD have adequate abilities in verb usage.

Keywords: developmental language disorder, syntactic complexity, trade-offs, verb frequency

Procedia PDF Downloads 154
744 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning

Authors: Grienggrai Rajchakit

Abstract:

As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.

Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning

Procedia PDF Downloads 160
743 Recent Developments in Artificial Intelligence and Information Communications Technology

Authors: Dolapo Adeyemo

Abstract:

Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.

Keywords: ICT, IOT, accessibility solutions, universal design

Procedia PDF Downloads 87
742 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
741 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR

Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid

Abstract:

Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.

Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA

Procedia PDF Downloads 457
740 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 216
739 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 326
738 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 136