Search results for: product life cycle assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16407

Search results for: product life cycle assessment

16317 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 231
16316 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 491
16315 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling

Procedia PDF Downloads 62
16314 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials

Authors: Francesca Scalisi, Cesare Sposito

Abstract:

The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.

Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction

Procedia PDF Downloads 331
16313 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: sustainability, post-disaster temporary housing, integrated value model for sustainability assessment, life cycle assessment

Procedia PDF Downloads 244
16312 Economic and Environmental Life Cycle Analysis of Construction and Demolition Waste Management System

Authors: Yanqing Yi, Maria Cristina Lavagnolo, Alessandro Manzardo

Abstract:

Construction and demolition waste (C&DW) is a major challenge in the European Union, emphasizing the urgent need for appropriate waste management processes. Selecting these solutions is challenging, as it requires identifying efficient C&DW management techniques that balance acceptable practices, regulatory compliance, resource conservation, economic viability, and environmental concerns. Techniques for analyzing many kinds of criteria allow for the use of multi-criteria analysis in life cycle assessment (LCA). Although LCA is commonly used to analyze environmental effects, the economic factor has not been fully integrated into the LCA approach in C&DW management. The life cycle costing (LCC) approach was designed to assess economic performance in the C&DW management process. The choice of an effective multi-criteria decision-making (MCDM) technique is critical for the C&DW system. This study seeks to propose a model that employs MCDM by considering LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, indicating it has the highest environmental impact. Finally, suggestions were developed to improve the system's environmental performance.

Keywords: life cycle assessment, life cycle costing, construction and demolition waste, multi-criteria decision making

Procedia PDF Downloads 48
16311 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network

Procedia PDF Downloads 219
16310 Study of Sustainability Indicators in a Milk Production Process

Authors: E. Lacasa, J. L. Santolaya, I. Millán

Abstract:

The progress toward sustainability implies maintaining and preferably improving both, human and ecosystem well-being, according to a triple bottom line that includes the environmental, economic and social dimensions. The life cycle assessment (LCA) is a method applicable to all production sectors that aims to quantify the environmental pressures and the benefits related to goods and services, as well as the trade-offs and the scope for improving areas of the production process. While using LCA to measure the environmental dimension of sustainability is widespread, similar approaches for the economic and the social dimensions still have limited application worldwide and there is a need for consistent and robust methods and indicators. This paper focuses on the milk production process and presents the analysis of the flows exchanged by an industrial installation through accounting all the energy and material inputs and the associated emissions and waste outputs at this stage of its life cycle. The functional unit is one litre of milk produced. Different metrics and indicators are used to assess the three dimensions of sustainability. Metrics considered useful to assess the production activities are the total water and energy consumptions and the milk production volume of each cow. The global warming, the value added and the working hours are indicators used to measure each sustainability dimension. The study is performed with two types of feeding of the cows, which includes a change in percentages of components as well. Nutritional composition of the milk obtained is almost kept. It is observed that environmental and social improvements involve high economic costs.

Keywords: milk production, sustainability, indicators, life cycle assessment

Procedia PDF Downloads 423
16309 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 284
16308 Life Cycle Assesment (LCA) Study of Shrimp Fishery in the South East Coast of Arabian Sea

Authors: Leela Edwin, Rithin Joseph, P. H. Dhiju Das, K. A. Sayana, P. S. Muhammed Sherief

Abstract:

The shrimp trawl fishery is considered one of the more valuable fisheries from the South east Coast of Arabian Sea. Inventory data for the shrimp were collected over 1 year period and used to carry out a life cycle assessment (LCA). LCA was performed to assess and compare the environmental impacts associated with the fishing operations related to shrimp fishery. This analysis included the operation of the vessels, together with major inputs related to the production of diesel, trawl nets, or anti-fouling paints. Data regarding vessel operation was obtained from the detailed questionnaires filled out by 180 trawlers. The analysis on environmental impacts linked to shrimp extraction on a temporal scale, showed that varying landings enhanced the environmental burdens mainly associated with activities related to diesel production, transport and consumption of the fishing vessels. Discard rates for trawlers were also identified as a major environmental impact in this fishery.

Keywords: shrimp trawling, life cycle assesment (LCA), Arabian sea, environmental impacts

Procedia PDF Downloads 309
16307 Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber.

Keywords: construction process, GWP, LCA, mass timber

Procedia PDF Downloads 157
16306 A Life Cycle Assessment of Greenhouse Gas Emissions from the Traditional and Climate-smart Farming: A Case of Dhanusha District, Nepal

Authors: Arun Dhakal, Geoff Cockfield

Abstract:

This paper examines the emission potential of different farming practices that the farmers have adopted in Dhanusha District of Nepal and scope of these practices in climate change mitigation. Which practice is more climate-smarter is the question that this aims to address through a life cycle assessment (LCA) of greenhouse gas (GHG) emissions. The LCA was performed to assess if there is difference in emission potential of broadly two farming systems (agroforestry–based and traditional agriculture) but specifically four farming systems. The required data for this was collected through household survey of randomly selected households of 200. The sources of emissions across the farming systems were paddy cultivation, livestock, chemical fertilizer, fossil fuels and biomass (fuel-wood and crop residue) burning. However, the amount of emission from these sources varied with farming system adopted. Emissions from biomass burning appeared to be the highest while the source ‘fossil fuel’ caused the lowest emission in all systems. The emissions decreased gradually from agriculture towards the highly integrated agroforestry-based farming system (HIS), indicating that integrating trees into farming system not only sequester more carbon but also help in reducing emissions from the system. The annual emissions for HIS, Medium integrated agroforestry-based farming system (MIS), LIS (less integrated agroforestry-based farming system and subsistence agricultural system (SAS) were 6.67 t ha-1, 8.62 t ha-1, 10.75 t ha-1 and 17.85 t ha-1 respectively. In one agroforestry cycle, the HIS, MIS and LIS released 64%, 52% and 40% less GHG emission than that of SAS. Within agroforestry-based farming systems, the HIS produced 25% and 50% less emissions than those of MIS and LIS respectively. Our finding suggests that a tree-based farming system is more climate-smarter than a traditional farming. If other two benefits (carbon sequestered within the farm and in the natural forest because of agroforestry) are to be considered, a considerable amount of emissions is reduced from a climate-smart farming. Some policy intervention is required to motivate farmers towards adopting such climate-friendly farming practices in developing countries.

Keywords: life cycle assessment, greenhouse gas, climate change, farming systems, Nepal

Procedia PDF Downloads 607
16305 The Life-Cycle Theory of Dividends: Evidence from Indonesia

Authors: Vashti Carissa

Abstract:

The main objective of this study is to examine whether the life-cycle theory of dividends could explain the determinant of an optimal dividend policy in Indonesia. The sample that was used consists of 1,420 non-financial and non-trade, services, investment firms listed in Indonesian Stock Exchange during the period of 2005-2014. According to this finding using logistic regression, firm life-cycle measured by retained earnings as a proportion of total equity (RETE) significantly has a positive effect on the propensity of a firm pays dividend. The higher company’s earned surplus portion in its capital structure could reflect firm maturity level which will increase the likelihood of dividend payment in mature firms. This result provides an additional empirical evidence about the existence of life-cycle theory of dividends for dividend payout phenomenon in Indonesia. It can be known that dividends tend to be paid by mature firms while retention is more dominating in growth firms. From the testing results, it can also be known that majority of sample firms are being in the growth phase which proves the fact about infrequent dividend distribution in Indonesia during the ten years observation period.

Keywords: dividend, dividend policy, life-cycle theory of dividends, mix of earned and contributed capital

Procedia PDF Downloads 283
16304 Impact of Storytelling for Effective Marketing and Reputation Management of Heritage Tourism Destination with Special Reference to Haflong (Assam, India)

Authors: Rohit Sarin

Abstract:

This paper is an attempt to prove the impact of storytelling for effective marketing and maintaining the reputation of the destination for long run. This notable aspect of heritage tourism is cultural exchange among the various communities who visit our country India. Every destination has a life cycle like the product known as destination life cycle. India is considered to be the hub of cultural heritage tourism; its cultural heritage tourism can be traced back to several centuries. Heritage tourism has gained the popularity of global cuisine activity. The statistics of 2014 reveals 903 million International Tourist in heritage tourism destination is done to know the impact of storytelling for their visit to particulars heritage tourism destination. SWOT analysis of the destination is undertaken for the research purpose. A collection of data from the travel agency was taken who visited the heritage tourism destination and were asked to fill questionnaire for the research purpose to know the impact of storytelling for their visit to destination. A total of 100 respondents filled the questionnaire. Likert scale was used in the paper also highlighted the scope, advantage and disadvantage of storytelling for effective marketing and reputation management.

Keywords: destination life cycle, heritage tourism, random sampling, reputation management, storytelling

Procedia PDF Downloads 563
16303 Research on the Strategy of Whole-Life-Cycle Campus Design from the Perspective of Sustainable Concept: A Case Study on Hangzhou Senior High School in Zhejiang

Authors: Fan Yang

Abstract:

With the development of social economy and the popularization of quality education, the Chinese government invests more and more funding in education. Campus constructions are experiencing a great development phase. Under the trend of sustainable development, modern green campus design needs to meet new requirements of contemporary, informational and diversified education means and adapt to future education development. Educators, designers and other participants of campus design are facing new challenges. By studying and analyzing the universal unsatisfied current situations and sustainable development requirements of Chinese campuses, this paper summarizes the strategies and intentions of the whole-life-cycle campus design. In addition, a Chinese high school in Zhejiang province is added to illustrate the design cycle in an actual case. It is aimed to make all participants of campus design, especially the designers, to realize the importance of whole-life-cycle campus design and cooperate better. Sustainable campus design is expected to come true in deed instead of becoming a slogan in this way.

Keywords: campus design, green school, sustainable development, whole-life-cycle design

Procedia PDF Downloads 359
16302 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 108
16301 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects

Authors: Ayedh Alqahtani, Andrew Whyte

Abstract:

Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.

Keywords: building projects, capital cost, life cycle cost, maintenance costs, operation costs

Procedia PDF Downloads 537
16300 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device

Authors: Jisoo Kim, Min Su Lee, Sunmook Lee

Abstract:

Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.

Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test

Procedia PDF Downloads 387
16299 Social Media as a Distribution Channel for Thailand’s Rice Berry Product

Authors: Phutthiwat Waiyawuththanapoom, Wannapong Waiyawuththanapoom, Pimploi Tirastittam

Abstract:

Nowadays, it is a globalization era which social media plays an important role to the lifestyle as an information source, tools to connect people together and etc. This research is object to find out about the significant level of the social media as a distribution channel to the agriculture product of Thailand. In this research, the agriculture product is the Rice Berry which is the cross-bred unmilled rice producing dark violet grain, is a combination of Hom Nin Rice and Thai Jasmine/ Fragrant Rice 105. Rice Berry has a very high nutrition and nice aroma so the product is in the growth stage of the product cycle. The problem for the Rice Berry product in Thailand is the production and the distribution channel. This study is to confirm that the social media is another option as the distribution channel for the product which is not a mass production product. This will be the role model for the other niche market product to select the distribution channel.

Keywords: distribution, social media, rice berry, distribution channel

Procedia PDF Downloads 424
16298 Setting the Acceleration Test Conditions for Establishing the Expiration Date of Probiotics

Authors: Myoyeon Kim

Abstract:

The number of probiotics is various from product to product. The product must contain as many bacteria as the number of bacteria that claim because it greatly affects consumers' choices. It is very difficult to determine the number of viable bacteria with tests that proceed during the product development stage because the shelf life of lactic acid bacteria is mostly 18 to 24 months, and product development proceeds much faster than this. To predict the shelf life, a method of checking the number of viable bacteria was studied by shortening the time. The experiment was conducted with a total of 7 products including our products. The ongoing test stored at room temperature, the acceleration test stored at 30°C and 40°C were performed, and the number of bacteria was measured every two weeks. The number of viable bacteria stored at 30°C for 12 weeks was similar to the ongoing test when the shelf life was imminent. If it took more than 12 weeks, the product development schedule was postponed, so acceleration had no meaning. It was found that products stored at 40°C were unsuitable as acceleration test temperatures because the bacteria were almost killed within 4 to 8 weeks.

Keywords: probiotics, shelf-life, acceleration test, lactobacillus

Procedia PDF Downloads 19
16297 Corporate Life Cycle and Corporate Social Responsibility Performance: Empirical Evidence from Pharmaceutical Industry in China

Authors: Jing (Claire) LI

Abstract:

The topic of corporate social responsibility (CSR) is significant for pharmaceutical companies in China at this current stage. This is because, as a rapid growth industry in China in recent years, the pharmaceutical industry in China has been undergone continuous and terrible incidents relating to CSR. However, there is limited research and practice of CSR in Chinese pharmaceutical companies. Also, there is an urgent call for more research in an international context to understand the implications of corporate life cycle on CSR performance. To respond to the research need and research call, this study examines the relationship between corporate life cycle and CSR performance of Chinese listed companies in pharmaceutical industry. This research studies Chinese listed companies in pharmaceutical industry for the period of 2010-2017, where the data is available in database. Following the literature, this study divides CSR performance with regards to CSR dimensions, including shareholders, creditors, employees, customers, suppliers, the government, and the society. This study uses CSR scores of HEXUN database and financial measures of these CSR dimensions to measure the CSR performance. This study performed regression analysis to examine the relationship between corporate life cycle stages and CSR performance with regards to CSR dimensions for pharmaceutical listed companies in China. Using cash flow pattern as proxy of corporate life cycle to classify corporate life cycle stages, this study found that most (least) pharmaceutical companies in China are in maturity (decline) stage. This study found that CSR performance for most dimensions are highest (lowest) in maturity (decline) stage as well. Among these CSR dimensions, performing responsibilities for shareholder is the most important among all CSR responsibilities for pharmaceutical companies. This study is the first to provide important empirical evidence from Chinese pharmaceutical industry on the association between life cycle and CSR performance, supporting that corporate life cycle is a key factor in CSR performance. The study expands corporate life cycle and CSR literatures and has both empirical and theoretical contributions to the literature. From perspective of empirical contributions, the findings contribute to the argument that whether there is a relationship between CSR performance and various corporate life cycle stages in the literature. This study also provides empirical evidence that companies in different corporate life cycles have difference in CSR performance. From perspective of theoretical contributions, this study relates CSR and stakeholders to corporate life cycle stages and complements the corporate life cycle and CSR literature. This study has important implications for managers and policy makers. First, the results will be helpful for managers to have an understanding in the essence of CSR, and their company’s current and future CSR focus over corporate life cycle. This study provides a reference for their actions and may help them make more wise resources allocation decisions of CSR investment. Second, policy makers (in the government, stock exchanges, and securities commission) may consider corporate life cycle as an important factor in formulating future regulations for companies. Future research can explore the "process-based" differences in CSR performance and more industries.

Keywords: China, corporate life cycle, corporate social responsibility, pharmaceutical industry

Procedia PDF Downloads 95
16296 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process

Authors: G. Schuh, S. Woelk, D. Schraknepper, A. Such

Abstract:

The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components.

Keywords: manufacturing, product design, production, technology assessment, technology management

Procedia PDF Downloads 526
16295 Properties of Rhizophora Charcoal for Product Design

Authors: Tanutpong Phriwanrat

Abstract:

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.

Keywords: design, product design, properties of rhizophora, rhizophora charcoal

Procedia PDF Downloads 391
16294 Affordable and Sustainable Housing Construction: Case Studies

Authors: Tony Rizk

Abstract:

Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature.

Keywords: residential housing, sustainable housing, life cycle cost, fire resistance, mold, infestation resistance

Procedia PDF Downloads 115
16293 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 397
16292 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 218
16291 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 136
16290 Life Cycle Analysis (LCA) for Transportation of Cross-Laminated Timber (CLT) Panels Comparing Two Origin Points of Supply

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

This overall research is targeted at the assessment of the new CLT-built Adohi Hall residential building located on the campus of the University of Arkansas in Fayetteville, Arkansas. The purpose of the Life Cycle Assessment (LCA) study is to analyze the environmental impacts resulting from the transportation route of the Austrian imported CLT to the construction site with those of the CLT assumed to be originating from Conway, Arkansas. The Global Warming Potential (GWP) of CLT from Europe (Styria-Graz in Austria) to the site was first investigated. The results were then compared with the GWP of the CLT produced in Conway, Arkansas. The impacts of each scenario, using the Ecoinvent database, are then calculated and compared against each other to find the most environmentally efficient scenario in terms of global warming impacts. The quantification of GWP is associated with different transportation systems, water, road, and rail. Obtained through comparison, the findings reveal that the use of local materials is more efficient. In addition, transportation by water produces less Greenhouse Gas (GHG) emission in comparison to freight transportation by rail and road. Thus, besides the travel distance, the utilized transportation system is still a significant factor and should be seriously considered in making decisions for moving materials.

Keywords: comparative analysis, GWP, LCA, transportation

Procedia PDF Downloads 230
16289 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 277
16288 Ecodesign of Bioplastic Films for Food Packaging and Shelf-life Extension

Authors: Sónia Ribeiro, Diana Farinha, Elsa Pereira, Hélia Sales, Filipa Figueiredo, Rita Pontes, João Nunes

Abstract:

Conventional plastic impacts on Planet, natural resources contamination, human health as well as animals are the most attractive environmental and health attention. The lack of treatment in the end-of-life (EOL) phase and uncontrolled discard allows plastic to be found everywhere in the world. Food waste is increasing significantly, with a final destination to landfills. To face these difficulties, new packaging solutions are needed with the objective of prolonging the shelf-life of products as well as equipment solutions for the development of the mentioned packaging. FLUI project thus presents relevance and innovation to reach a new level of knowledge and industrial development focused in Ecodesign. Industrial equipment field for the manufacture of new packaging solutions based on biodegradable plastics films to apply in the food sector. With lesser environmental impacts and new solutions that make it possible to prevent food waste, reduce the production e consequent poor disposal of plastic of fossil origin. It will be a paradigm shift at different levels, from industry to waste treatment stations, passing through commercial agents and consumers. It can be achieved through the life cycle assessment (LCA) and ecodesign of the products, which integrates the environmental concerns in the design of the product as well as through the entire life cycle. The FLUI project aims to build a piece of new bio-PLA extrusion equipment with the incorporation of bioactive extracts through the production of flexible mono- and multi-layer functional films (FLUI systems). The biofunctional and biodegradable films will prompt the extension of packaged products’ shelf-life, reduce food waste and contribute to reducing the consumption of non-degradable fossil plastics, as well as the use of raw material from renewable sources.

Keywords: food packing, bioplastics, ecodesign, circular economy

Procedia PDF Downloads 80