Search results for: input current
10869 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems
Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn
Abstract:
This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits
Procedia PDF Downloads 48410868 “To Err Is Human…” Revisiting Oral Error Correction in Class
Authors: David Steven Rosenstein
Abstract:
The widely accepted “Input Theory” of language acquisition proposes that language is basically acquired unconsciously through extensive exposure to all kinds of natural oral and written sources, especially those where the level of the input is slightly above the learner’s competence. As such, it implies that oral error correction by teachers in a classroom is unnecessary, a waste of time, and maybe even counterproductive. And yet, oral error correction by teachers in the classroom continues to be a very common phenomenon. While input theory advocates claim that such correction doesn’t work, interrupts a student’s train of thought, harms fluency, and may cause students embarrassment and fear, many teachers would disagree. They would claim that students know they make mistakes and want to be corrected in order to know they are improving, thereby encouraging students’ desire to keep studying. Moreover, good teachers can create a positive atmosphere where students will not be embarrassed or fearful. Perhaps now is the time to revisit oral error correction in the classroom and consider the results of research carried out long ago by the present speaker. The research indicates that oral error correction may be beneficial in many cases.Keywords: input theory, language acquisition, teachers' corrections, recurrent errors
Procedia PDF Downloads 3510867 3D Mesh Coarsening via Uniform Clustering
Authors: Shuhua Lai, Kairui Chen
Abstract:
In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.Keywords: coarsening, mesh clustering, shape approximation, mesh simplification
Procedia PDF Downloads 38410866 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 10710865 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 28510864 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: direct method, finite element method, foundation, R/C Frame, soil-structure interaction
Procedia PDF Downloads 64710863 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters
Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn
Abstract:
This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits
Procedia PDF Downloads 56810862 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 17310861 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL
Authors: Ankit Shai
Abstract:
CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx
Procedia PDF Downloads 29710860 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 14910859 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.Keywords: Kalman filter (KF), least square estimation (LSE), structural health monitoring (SHM), structural system identification
Procedia PDF Downloads 32210858 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 11310857 Task Scheduling and Resource Allocation in Cloud-based on AHP Method
Authors: Zahra Ahmadi, Fazlollah Adibnia
Abstract:
Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow
Procedia PDF Downloads 14910856 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 23410855 High Precision 65nm CMOS Rectifier for Energy Harvesting using Threshold Voltage Minimization in Telemedicine Embedded System
Authors: Hafez Fouad
Abstract:
Telemedicine applications have very low voltage which required High Precision Rectifier Design with high Sensitivity to operate at minimum input Voltage. In this work, we targeted 0.2V input voltage using 65 nm CMOS rectifier for Energy Harvesting Telemedicine application. The proposed rectifier which designed at 2.4GHz using two-stage structure found to perform in a better case where minimum operation voltage is lower than previous published paper and the rectifier can work at a wide range of low input voltage amplitude. The Performance Summary of Full-wave fully gate cross-coupled rectifiers (FWFR) CMOS Rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2 V are 490.9 mV and 1.997 V, maximum VCE = 99.85 % and maximum PCE = 46.86 %. The Performance Summary of Differential drive CMOS rectifier with external bootstrapping circuit rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2V are 265.5 mV (0.265V) and 1.467 V respectively, maximum VCE = 93.9 % and maximum PCE= 15.8 %.Keywords: energy harvesting, embedded system, IoT telemedicine system, threshold voltage minimization, differential drive cmos rectifier, full-wave fully gate cross-coupled rectifiers CMOS rectifier
Procedia PDF Downloads 16710854 Experimenting the Influence of Input Modality on Involvement Load Hypothesis
Authors: Mohammad Hassanzadeh
Abstract:
As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.
Procedia PDF Downloads 28110853 Aggregate Fluctuations and the Global Network of Input-Output Linkages
Authors: Alexander Hempfing
Abstract:
The desire to understand business cycle fluctuations, trade interdependencies and co-movement has a long tradition in economic thinking. From input-output economics to business cycle theory, researchers aimed to find appropriate answers from an empirical as well as a theoretical perspective. This paper empirically analyses how the production structure of the global economy and several states developed over time, what their distributional properties are and if there are network specific metrics that allow identifying structurally important nodes, on a global, national and sectoral scale. For this, the World Input-Output Database was used, and different statistical methods were applied. Empirical evidence is provided that the importance of the Eastern hemisphere in the global production network has increased significantly between 2000 and 2014. Moreover, it was possible to show that the sectoral eigenvector centrality indices on a global level are power-law distributed, providing evidence that specific national sectors exist which are more critical to the world economy than others while serving as a hub within the global production network. However, further findings suggest, that global production cannot be characterized as a scale-free network.Keywords: economic integration, industrial organization, input-output economics, network economics, production networks
Procedia PDF Downloads 28210852 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 50210851 An Empirical Investigation on the Dynamics of Knowledge and IT Industries in Korea
Authors: Sang Ho Lee, Tae Heon Moon, Youn Taik Leem, Kwang Woo Nam
Abstract:
Knowledge and IT inputs to other industrial production have become more important as a key factor for the competitiveness of national and regional economies, such as knowledge economies in smart cities. Knowledge and IT industries lead the industrial innovation and technical (r)evolution through low cost, high efficiency in production, and by creating a new value chain and new production path chains, which is referred as knowledge and IT dynamics. This study aims to investigate the knowledge and IT dynamics in Korea, which are analyzed through the input-output model and structural path analysis. Twenty-eight industries were reclassified into seven categories; Agriculture and Mining, IT manufacture, Non-IT manufacture, Construction, IT-service, Knowledge service, Non-knowledge service to take close look at the knowledge and IT dynamics. Knowledge and IT dynamics were analyzed through the change of input output coefficient and multiplier indices in terms of technical innovation, as well as the changes of the structural paths of the knowledge and IT to other industries in terms of new production value creation from 1985 and 2010. The structural paths of knowledge and IT explain not only that IT foster the generation, circulation and use of knowledge through IT industries and IT-based service, but also that knowledge encourages IT use through creating, sharing and managing knowledge. As a result, this paper found the empirical investigation on the knowledge and IT dynamics of the Korean economy. Knowledge and IT has played an important role regarding the inter-industrial transactional input for production, as well as new industrial creation. The birth of the input-output production path has mostly originated from the knowledge and IT industries, while the death of the input-output production path took place in the traditional industries from 1985 and 2010. The Korean economy has been in transition to a knowledge economy in the Smart City.Keywords: knowledge and IT industries, input-output model, structural path analysis, dynamics of knowledge and it, knowledge economy, knowledge city and smart city
Procedia PDF Downloads 33610850 Design and Development of Compact 1KW Floating Battery Discharge Regulator
Authors: A. Sreedevi, G. Anantaramu
Abstract:
The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.Keywords: push pull converter, current doubler, converter, PWM control
Procedia PDF Downloads 10710849 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application
Authors: D. J. Dahigaonkar, D. G. Wakde
Abstract:
The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation
Procedia PDF Downloads 41210848 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry
Authors: M. F. Wu, F. T. Cheng
Abstract:
Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.Keywords: activity-based benefit assessment approach, input mixed, output rate, wet blue
Procedia PDF Downloads 37810847 A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery
Authors: Bosung Kim, Youngmok Yun, Sungho Lee, Chanseok Park
Abstract:
There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V.Keywords: isotope, betavoltaic, nuclear, battery, energy harvesting
Procedia PDF Downloads 33110846 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 46010845 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Authors: Jung–Min Yang
Abstract:
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.Keywords: asynchronous sequential machines, corrective control, model matching, input/output control
Procedia PDF Downloads 34510844 An Analysis of Energy Use and Input Level for Tomato Production in Turkey
Authors: Hasan Vural
Abstract:
The purpose of this study was to determine energy equivalents of inputs and output in tomato production in Bursa province. The data in this study were collected from tomato farms in Bursa province, Karacabey and Mustafakemalpasa district. Questionnaires were administered through face-to-face interview in 2011-2012. The results of the study show that diesel have the highest rate of energy equivalency of all the inputs used in tomato production at 60,07%. The energy equivalent rate of electricity is 4,26% and the energy equivalent rate of water is 0,87%. The energy equivalent rates for human power, machinery, chemicals and water for irrigation were determined to be low in tomato production. According to the output/input ratio calculated, the energy ratio is 1,50 in tomato production in the research area. This ratio implies that the inputs used in tomato production have not been used effectively. Ineffective use of these resources also causes environmental problems.Keywords: Tomato production, energy ratio, energy input, Turkey
Procedia PDF Downloads 23510843 Design of Low Latency Multiport Network Router on Chip
Authors: P. G. Kaviya, B. Muthupandian, R. Ganesan
Abstract:
On-chip routers typically have buffers are used input or output ports for temporarily storing packets. The buffers are consuming some router area and power. The multiple queues in parallel as in VC router. While running a traffic trace, not all input ports have incoming packets needed to be transferred. Therefore large numbers of queues are empty and others are busy in the network. So the time consumption should be high for the high traffic. Therefore using a RoShaQ, minimize the buffer area and time The RoShaQ architecture was send the input packets are travel through the shared queues at low traffic. At high load traffic the input packets are bypasses the shared queues. So the power and area consumption was reduced. A parallel cross bar architecture is proposed in this project in order to reduce the power consumption. Also a new adaptive weighted routing algorithm for 8-port router architecture is proposed in order to decrease the delay of the network on chip router. The proposed system is simulated using Modelsim and synthesized using Xilinx Project Navigator.Keywords: buffer, RoShaQ architecture, shared queue, VC router, weighted routing algorithm
Procedia PDF Downloads 54510842 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 19210841 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System
Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui
Abstract:
Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system
Procedia PDF Downloads 25910840 A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation
Authors: Amar Omeiri
Abstract:
This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads.Keywords: active power filter, current harmonics and reactive power compensation, PWM inverter, Total Harmonic Distortion, power quality
Procedia PDF Downloads 590