Search results for: incremental capacity reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8648

Search results for: incremental capacity reduction

8558 Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets

Authors: Lucie Novakova, Petr Homola, Vaclav Kafka

Abstract:

Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.

Keywords: incremental forming, metallography, hardness, titanium alloys

Procedia PDF Downloads 439
8557 Mitigating Climate Change: Cross-Country Variation in Policy Ambition

Authors: Mohammad Aynal Haque

Abstract:

Under the international cooperation — Paris Agreement — countries outline their self-determined policy ambition for emissions reduction in their Nationally Determined Contributions (NDCs) as a key to addressing climate change globally. Although practically all countries commit themselves to reach the Paris landmark (below 20 C) globally, some act as climate leaders, others behave as followers, and others turn out to be climate laggards. As a result, there is a substantial variation in ‘emissions reduction targets’ across countries. Thus, a question emerges: What explains this variation? Or why do some countries opt for higher while others opt for lower ‘emissions reduction targets toward global mitigation efforts? Conceptualizing the ‘emissions reduction targets by 2030’ outlined in NDCs by each country as the climate policy ambition (CPA), this paper explores how certain national political, economic, environmental, and external factors play vital roles in determining climate policy ambition. Based on the cross-country regression analysis among 168 countries, this study finds that democracy, vulnerability to climate change effects, and foreign direct investment have substantial effects on CPA. The paper also finds that resource capacity has a minimal negative effect on CPA across developed countries.

Keywords: climate change, Paris agreement, international cooperation, political economy, environmental politics, NDCs

Procedia PDF Downloads 67
8556 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm

Procedia PDF Downloads 403
8555 Study of the Kinetic of the Reduction of Alpha and Beta PbO2 in H2SO4 on the Microcavity Electrode

Authors: N. Chahmana, I. Zerroual

Abstract:

The aim of our work is the contribution to the improvement of the performances of the positive plate of the lead acid battery. For that, we synthesized two varieties of PbO2 used in industry, alpha and beta PbO2 by electrochemical way starting from the not formed industrial plates. We studied the kinetics of reduction of the alpha varieties and PbO2 beta on electrode with microcavity in sulphuric medium. The electrochemical study of the powders of α and β-PbO2 was made by cyclic voltamperometry with sweeping of potential by using a traditional assembly with three electrodes. Values of the coefficient of diffusion of the proton in α and β-PbO2 are respectively equal to 0.498*10-8cm2 /s and 0.793*10-8 cm2 /s. During the cycling of the two varieties of PbO2, we obtain a clear increase in the capacity.

Keywords: lead accumulator, α and β - PbO2, synthesis, kinetics, cyclic voltametry, coefficient of diffusion

Procedia PDF Downloads 567
8554 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.

Keywords: axial load, cavity, clay, pile, ultimate capacity

Procedia PDF Downloads 261
8553 Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil

Authors: Sven Krabbenhoft, Kristian Krabbenhoft, Lars Damkilde

Abstract:

The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design.

Keywords: footings, bearing capacity, slopes, cohesionnless soil

Procedia PDF Downloads 452
8552 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results

Procedia PDF Downloads 498
8551 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 443
8550 A Brief Review of the Axial Capacity of Circular High Strength CFST Columns

Authors: Fuat Korkut, Soner Guler

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian Standard

Procedia PDF Downloads 498
8549 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin

Abstract:

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping

Procedia PDF Downloads 501
8548 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall

Procedia PDF Downloads 386
8547 Influence of Intermediate Principal Stress on Solution of Planar Stability Problems

Authors: M. Jahanandish, M. B. Zeydabadinejad

Abstract:

In this paper, von Mises and Drucker-Prager yield criteria, as typical ones that consider the effect of intermediate principal stress σ2, have been selected and employed for investigating the influence of σ2 on the solution of a typical stability problem. The bearing capacity factors have been calculated under plane strain condition (strip footing) and axisymmetric condition (circular footing) using the method of stress characteristics together with the criteria mentioned. Different levels of σ2 relative to the other two principal stresses have been considered. While a higher σ2 entry in yield criterion gives a higher bearing capacity; its entry in equilibrium equations (axisymmetric) causes substantial reduction.

Keywords: intermediate principal stress, plane strain, axisymmetric, yield criteria

Procedia PDF Downloads 454
8546 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed F. Zobaa

Abstract:

Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm

Procedia PDF Downloads 353
8545 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 356
8544 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam

Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian

Abstract:

Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.

Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam

Procedia PDF Downloads 366
8543 A Review of the Axial Capacity of Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian Standard

Procedia PDF Downloads 402
8542 Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir

Authors: Vidit Mohan, Ashwin P. Ramesh, Anirudh Toshniwal

Abstract:

Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process.

Keywords: alkali surfactant alternate gas (ASAG), surfactant alternate gas (SAG), laboratory investigation, EOR process

Procedia PDF Downloads 464
8541 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 239
8540 Establishing Digital Forensics Capability and Capacity among Malaysia's Law Enforcement Agencies: Issues, Challenges and Recommendations

Authors: Sarah Taylor, Nor Zarina Zainal Abidin, Mohd Zabri Adil Talib

Abstract:

Although cybercrime is on the rise, yet many Law Enforcement Agencies in Malaysia faces difficulty in establishing own digital forensics capability and capacity. The main reasons are undoubtedly because of the high cost and difficulty in convincing their management. A survey has been conducted among Malaysia’s Law Enforcement Agencies owning a digital forensics laboratory to understand their history of building digital forensics capacity and capability, the challenges and the impact of having own laboratory to their case investigation. The result of the study shall be used by other Law Enforcement Agencies in justifying to their management to establish own digital forensics capability and capacity.

Keywords: digital forensics, digital forensics capacity and capability, laboratory, law enforcement agency

Procedia PDF Downloads 231
8539 Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity

Authors: Han Bai, Tong Zhang, Lemei Yu, Doudou Xie, Liang Zhao

Abstract:

Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool.

Keywords: traffic safety, road transition, freeway tunnel, traffic capacity

Procedia PDF Downloads 317
8538 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic

Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki

Abstract:

In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.

Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond

Procedia PDF Downloads 315
8537 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 156
8536 Oil Logistics for Refining to Northern Europe

Authors: Vladimir Klepikov

Abstract:

To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, tanker draft

Procedia PDF Downloads 164
8535 A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns

Authors: Eylem Guzel, Faruk Osmanoglu, Muhammet Kurucu

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian standard

Procedia PDF Downloads 388
8534 Investigation on the Kinetic Mechanism of the Reduction of Fe₂O₃/CoO-Decorated Carbon Xerogel

Authors: Mohammad Reza Ghaani, Michele Catti

Abstract:

The reduction of CoO/Fe₂O₃ oxides supported on carbon xerogels was studied to elucidate the effect of nano-size distribution of the catalyst in carbon matrices. Resorcinol formaldehyde xerogels were synthesized, impregnated with iron and cobalt nitrates, and subsequently heated to obtain the oxides. The mechanism of oxide reduction to metal was investigated by in-situ synchrotron X-ray diffraction in dynamic, non-isothermal conditions. Kinetic profiles of the reactions were obtained by plotting the diffraction intensities of selected Bragg peaks vs. temperature. The extracted Temperature-Programmed-Reduction (TPR) diagrams were analyzed by appropriate kinetic models, leading to best results with the Avrami-Erofeev model for all reduction reactions considered. The activation energies for the two-step reduction of iron oxide were 65 and 37 kJmol⁻¹, respectively. The average value for the reduction of CoO to Co was found to be around 21 kJ mol⁻¹. Such results may contribute to develop efficient and inexpensive non-noble metal-based catalysts in element form, e.g., Fe, Co, via heterogenization of metal complexes on mesoporous supports.

Keywords: non-isothermal kinetics, carbon aerogel, in-situ synchrotron X-ray diffraction, reduction mechanisms

Procedia PDF Downloads 229
8533 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings

Authors: Nadine Maier, Martin Mensinger, Enea Tallushi

Abstract:

In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.

Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling

Procedia PDF Downloads 103
8532 Impact of the Operation and Infrastructure Parameters to the Railway Track Capacity

Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Matej Babin

Abstract:

The railway transport is considered as a one of the most environmentally friendly mode of transport. With future prediction of increasing of freight transport there are lines facing problems with demanded capacity. Increase of the track capacity could be achieved by infrastructure constructive adjustments. The contribution shows how the travel time can be minimized and the track capacity increased by changing some of the basic infrastructure and operation parameters, for example, the minimal curve radius of the track, the number of tracks, or the usable track length at stations. Calculation of the necessary parameter changes is based on the fundamental physical laws applied to the train movement, and calculation of the occupation time is dependent on the changes of controlling the traffic between the stations.

Keywords: curve radius, maximum curve speed, track mass capacity, reconstruction

Procedia PDF Downloads 330
8531 A New Lateral Load Pattern for Pushover Analysis of RC Frame Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Mohammad Haghbin

Abstract:

Non-linear static analysis, commonly referred to as pushover analysis, is a powerful tool for assessing the seismic response of structures. A suitable lateral load pattern for pushover analysis can bring the results of this simple, quick and low-cost analysis close to the realistic results of nonlinear dynamic analyses. In this research, four samples of 10- and 15 story (two- and four-bay) reinforced concrete frames were studied. The lateral load distribution patterns recommended in FEMA 273/356 guidelines were applied to the sample models in order to perform pushover analyses. The results were then compared to the results obtained from several nonlinear incremental dynamic analyses for a range of earthquakes. Finally, a lateral load distribution pattern was proposed for pushover analysis of medium-rise reinforced concrete buildings based on the results of nonlinear static and dynamic analyses.

Keywords: lateral load pattern, nonlinear static analysis, incremental dynamic analysis, medium-rise reinforced concrete frames, performance based design

Procedia PDF Downloads 464
8530 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 168
8529 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 165