Search results for: herbicide resistant weeds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1134

Search results for: herbicide resistant weeds

1044 Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles

Authors: Rama Devi Kyatham, D. Ashok, K. S. K. Rao Patnaik, Raju Bathula

Abstract:

We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods.

Keywords: pyrazoles, validation, resistant microbial strains, anti-microbial activities

Procedia PDF Downloads 144
1043 Evaluation of Chromium Fortified-Parboiled Rice Coated with Herbal Extracts: Resistant Starch, and Glycemic Index

Authors: Wisnu Adi Yulianto, Chatarina Lilis Suryani, Mamilisti Susiati, Hendy Indra Permana

Abstract:

Parboiled rice was developed to produce rice that has low glycemic index, especially for diabetics. Yet, parboiled rice is not enough because diabetics also lack of chromium. The sign of chromium (Cr) deficiency in diabetics is impaired glucose tolerance. Cr fortification was done for increasing Cr content in rice. Naturally-occurring compounds that have been proven to improve insulin sensitivity include Cr and polyphenol found in cinnamon, pandan and bay leaf. This research aimed to evaluate content of resistant starch and glycemic index of Cr - fortified - parboiled rice (Cr-PR) coated with herbal extracts. Variety of unhulled rice and forticant used in the experiment were Ciherang and CrCl3, respectively. Three herbal extracts used were cinnamon, pandan and bay leaf. Each concentration of herbal extracts in the amount of 3%, 6%, and 9% were added in the coating substance to coat Cr-PR. Resistant starch (RS) content was determined by enzymatic process through glucooxydase method. Testing of the GI was conducted on 18 non-diabetic volunteers. RS content of Cr-PR coated with herbal extracts ranged between 8.27 – 8.84 % (dry weight). Cr-PR coated with all herbal extracts of 3% concentration had higher RS content than the ones with herbal extracts of 6% and 9% concentration (P <0.05). Value of the rice GI ranged 29 - 40. The lowest GI (29-30) was attained by the rice coated with enrichment of 6-9% cinnamon extract.

Keywords: coating, Cr-fortified-parboiled rice, glycemic index, herbal extracts, resistant starch

Procedia PDF Downloads 329
1042 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates

Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady

Abstract:

The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.

Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus

Procedia PDF Downloads 134
1041 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt

Authors: Omneya M. Helmy, Mona T. Kashef

Abstract:

Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.

Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases

Procedia PDF Downloads 261
1040 Multidrug Resistance Mechanisms among Gram Negative Clinical Isolates from Egypt

Authors: Mona T. Kashef, Omneya M. Helmy

Abstract:

Multidrug resistant (MDR) bacteria have become a significant public health threat. The prevalence rates, of Gram negative MDR bacteria, are in continuous increase. However, few data are available about these resistant strains. Since, third generation cephalosporins are one of the most commonly used antimicrobials, we set out to investigate the prevalence, different mechanisms and clonal relatedness of multidrug resistance among third generation resistant Gram negative clinical isolates. A total of 114 Gram negative clinical isolates, previously characterized as being resistant to at least one of 3rd generation cephalosporins, were included in this study. Each isolate was tested, using Kirby Bauer disk diffusion method, against its assigned categories of antimicrobials. The role of efflux pump in resistance development was tested by the efflux pump inhibitor-based microplate assay using chloropromazine as an inhibitor. Detecting different aminoglycosides, β-lactams and quinolones resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using Random Amplification of Polymorphic DNA technique. MDR phenotype was detected in 101 isolates (89%). Efflux pump mediated resistance was detected in 49/101 isolates. Aminoglycosides resistance genes; armA and aac(6)-Ib were detected in one and 53 isolates, respectively. The aac(6)-Ib-cr allele, that also confers resistance to floroquinolones, was detected in 28/53 isolates. β-lactam resistance genes; blaTEM, blaSHV, blaCTX-M group 1 and group 9 were detected in 52, 29, 61 and 35 isolates, respectively. Quinolone resistance genes; qnrA, qnrB and qnrS were detectable in 2, 14, 8 isolates respectively, while qepA was not detectable at all. High diversity was observed among tested MDR isolates. MDR is common among 3rd generation cephalosporins resistant Gram negative bacteria, in Egypt. In most cases, resistance was caused by different mechanisms. Therefore, new treatment strategies should be implemented.

Keywords: gram negative, multidrug resistance, RAPD typing, resistance genes

Procedia PDF Downloads 285
1039 Allelopathic Action of Diferents Sorghum bicolor [L.] Moench Fractions on Ipomoea grandifolia [Dammer] O'Donell

Authors: Mateus L. O. Freitas, Flávia H. de M. Libório, Letycia L. Ricardo, Patrícia da C. Zonetti, Graciene de S. Bido

Abstract:

Weeds compete with agricultural crops for resources such as light, water, and nutrients. This competition can cause significant damage to agricultural producers, and, currently, the use of agrochemicals is the most effective method for controlling these undesirable plants. Morning glory (Ipomoea grandifolia [Dammer] O'Donell) is an aggressive weed and significantly reduces agricultural productivity making harvesting difficult, especially mechanical harvesting. The biggest challenge in modern agriculture is to preserve high productivity reducing environmental damage and maintaining soil characteristics. No-till is a sustainable practice that can reduce the use of agrochemicals and environmental impacts due to the presence of plant residues in the soil, which release allelopathic compounds and reduce the incidence or alter the growth and development of crops and weeds. Sorghum (Sorghum bicolor [L.] Moench) is a forage with proven allelopathic activity, mainly for producing sorgholeone. In this context, this research aimed to evaluate the allelopathic action of sorghum fractions using hexane, dichloromethane, butanol, and ethyl acetate on the germination and initial growth of morning glory. The parameters analyzed were the percentage of germination, speed of germination, seedling length, and biomass weight (fresh and dry). The bioassays were performed in Petri dishes, kept in an incubation chamber for 7 days, at 25 °C, with a 12h photoperiod. The experimental design was completely randomized, with five replicates of each treatment. The data were evaluated by analysis of variance, and the averages between each treatment were compared using the Scott Knott test at a 5% significance level. The results indicated that the dichloromethane and ethyl acetate fractions showed bioherbicidal effects, promoting effective reductions on germination and initial growth of the morning glory. It was concluded that allelochemicals were probably extracted in these fractions. These secondary metabolites can reduce the use of agrochemicals and environmental impact, making agricultural production systems more sustainable.

Keywords: allelochemicals, secondary metabolism, sorgoleone, weeds

Procedia PDF Downloads 129
1038 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 49
1037 Resistance Evaluation of Common Wheat Varieties/Lines to Leaf Rust and Stripe Rust at Seedling and Adult-Plant Stage in China, Gansu Province

Authors: Shelin Jin, Jin Huang, Shiqin Cao, Qiuzhen Jia, Bo Zhang, Zhenyu Sun

Abstract:

Stripe rust and leaf rust, caused by Puccinia striiformis f.sp. tritici and Puccinia recondita f.sp. tritici are two of the most damaging diseases of wheat in China. In recent years, leaf rust has migrated to some wheat growing areas previously suitable for stripe rust, resulting in a mixture of the two diseases occurring in the same area and at the same time, and seriously damage wheat production in China, Gansu Province. The most effective method of prevention those two diseases are through the use of resistant cultivars. However, many studies have only carried out of resistance of wheat varieties for a single disease; resistance to both diseases is unknown. In order to definite the resistance composition of wheat varieties to these two diseases, 715 wheat varieties/lines from 8 breeding units in Gansu province were collected to test for the resistance to stripe rust and leaf rust at seedling stage in greenhouse and at adult plant stage in field in 2016-2018, respectively. Spore suspensions with the fresh mixture races of CYR32, CYR33, and CYR34 of Puccinia striiformis f.sp. tritici and mixture races of THTP, THTT, TKTT, and THTS of Puccinia recondita f.sp. tritici were used for inoculation separately. The result shows that only 4.74% of the varieties/lines show comprehensive resistance to strip rust and leaf rust at all growth stages, and there are 34 wheat varieties/lines including Tianxuan 67, 2006-1-4-1-4-2-7-2-3-10, 03-139-1-2-2-1-2-1, Qingnong 21, Lenghan 5, 04-203-1-1-1 and so on. In seedling stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 56.64% and 30.23%. While the materials were susceptible to these diseases were 43.36% and 69.77%. 71 varieties/lines were resistant to those two diseases, accounted for 9.93%. 10 varieties/lines, accounted for 1.4%, were highly resistant (including immune/near immune) to those two diseases. In adult-plant stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 76.53% and 36.11%. While the materials were susceptible to these diseases were 23.47% and 63.89%. 137 varieties/lines were resistant to those two diseases, accounted for 19.16%. 59 varieties/lines, accounted for 8.25%, were highly resistant (including immune/near immune) to those two diseases. Overall, the 715 varieties /lines had high resistance to wheat strip rust, but poor resistance to leaf rust. This study found out some resistant materials which had better comprehensive resistance to leaf rust and strip rust, also pointed out the resistance characteristics of 715 varieties/lines to those two diseases at the seedling stage and adult-plant stage, which will be of great guiding significance in wheat resistance breeding and comprehensive control those two diseases in China, Gansu Province in the future.

Keywords: Puccinia striiformis f.sp. tritici, Puccinia recondita f.sp. tritici, resistance of variety, wheat

Procedia PDF Downloads 94
1036 Role of ABC-Type Efflux Transporters in Antifungal Resistance of Candida auris

Authors: Mohamed Mahdi Alshahni, Takashi Tamura, Koichi Makimura

Abstract:

Objective: The objective of this study is to evaluate roles of ABC-type efflux transporters in the resistance of Candida auris against common antifungal agents. Material and Methods: A wild-type C. auris strain and its antifungal resistant derivative strain that is generated through induction by antifungal agents were used in this study. The strains were cultured onto media containing beauvericin alone or in combination with azole agents. Moreover, expression levels of four ABC-type transporter’s homologs in those strains were analyzed by real time PCR with or without antifungal stress by fluconazole or voriconazole. Results: Addition of beauvericin helped to partially restore the susceptibility of the resistant strain against fluconazole, suggesting participation of ABC-type transporters in the resistance mechanism. Real time PCR results showed that mRNA levels of three out of the four analyzed transporters in the resistant strain were more than 2-fold higher than their counterparts in the wild-type strain under negative control and antifungal agent-containing conditions. Conclusion: C. auris is an emerging multidrug-resistant pathogen causing human mortality worldwide. Providing effective treatment has been hampered by the resistance to antifungal drugs, demanding understanding the resistance mechanism in order to devise new therapeutic strategies. Our data suggest a partial contribution of ABC-type transporters to the resistance of this pathogen.

Keywords: resistance, C. auris, transporters, antifungi

Procedia PDF Downloads 137
1035 Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa

Authors: Okafor Joan, Nwodo Uchechukwu

Abstract:

Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents.

Keywords: Klebsiella pneumonia, efflux pumps, regulatory genes, multidrug-resistant, hospital, PCR

Procedia PDF Downloads 62
1034 Investigating the Essentiality of Oxazolidinones in Resistance-Proof Drug Combinations in Mycobacterium tuberculosis Selected under in vitro Conditions

Authors: Gail Louw, Helena Boshoff, Taeksun Song, Clifton Barry

Abstract:

Drug resistance in Mycobacterium tuberculosis is primarily attributed to mutations in target genes. These mutations incur a fitness cost and result in bacterial generations that are less fit, which subsequently acquire compensatory mutations to restore fitness. We hypothesize that mutations in specific drug target genes influence bacterial metabolism and cellular function, which affects its ability to develop subsequent resistance to additional agents. We aim to determine whether the sequential acquisition of drug resistance and specific mutations in a well-defined clinical M. tuberculosis strain promotes or limits the development of additional resistance. In vitro mutants resistant to pretomanid, linezolid, moxifloxacin, rifampicin and kanamycin were generated from a pan-susceptible clinical strain from the Beijing lineage. The resistant phenotypes to the anti-TB agents were confirmed by the broth microdilution assay and genetic mutations were identified by targeted gene sequencing. Growth of mono-resistant mutants was done in enriched medium for 14 days to assess in vitro fitness. Double resistant mutants were generated against anti-TB drug combinations at concentrations 5x and 10x the minimum inhibitory concentration. Subsequently, mutation frequencies for these anti-TB drugs in the different mono-resistant backgrounds were determined. The initial level of resistance and the mutation frequencies observed for the mono-resistant mutants were comparable to those previously reported. Targeted gene sequencing revealed the presence of known and clinically relevant mutations in the mutants resistant to linezolid, rifampicin, kanamycin and moxifloxacin. Significant growth defects were observed for mutants grown under in vitro conditions compared to the sensitive progenitor. Mutation frequencies determination in the mono-resistant mutants revealed a significant increase in mutation frequency against rifampicin and kanamycin, but a significant decrease in mutation frequency against linezolid and sutezolid. This suggests that these mono-resistant mutants are more prone to develop resistance to rifampicin and kanamycin, but less prone to develop resistance against linezolid and sutezolid. Even though kanamycin and linezolid both inhibit protein synthesis, these compounds target different subunits of the ribosome, thereby leading to different outcomes in terms of fitness in the mutants with impaired cellular function. These observations showed that oxazolidinone treatment is instrumental in limiting the development of multi-drug resistance in M. tuberculosis in vitro.

Keywords: oxazolidinones, mutations, resistance, tuberculosis

Procedia PDF Downloads 138
1033 Physical Properties and Resistant Starch Content of Rice Flour Residues Hydrolyzed by α-Amylase

Authors: Waranya Pongpaiboon, Warangkana Srichamnong, Supat Chaiyakul

Abstract:

Enzymatic modification of rice flour can produce highly functional derivatives use in food industries. This study aimed to evaluate the physical properties and resistant starch content of rice flour residues hydrolyzed by α-amylase. Rice flour hydrolyzed by α-amylase (60 and 300 u/g) for 1, 24 and 48 hours were investigated. Increasing enzyme concentration and hydrolysis time resulted in decreased rice flour residue’s lightness (L*) but increased redness (a*) and yellowness (b*) of rice flour residues. The resistant starch content and peak viscosity increased when hydrolysis time increased. Pasting temperature, trough viscosity, breakdown, final viscosity, setback and peak time of the hydrolyzed flours were not significantly different (p>0.05). The morphology of native flour was smooth without observable pores and polygonal with sharp angles and edges. However, after hydrolysis, granules with a slightly rough and porous surface were observed and a rough and porous surface was increased with increasing hydrolyzed time. The X-ray diffraction patterns of native flour showed A-type configuration, which hydrolyzed flour showed almost 0% crystallinity indicated that both amorphous and crystalline structures of starch were simultaneously hydrolyzed by α-amylase.

Keywords: α-Amylase, enzymatic hydrolysis, pasting properties, resistant starch

Procedia PDF Downloads 195
1032 The Effect of Bacteria on Mercury's Biological Removal

Authors: Nastaran Soltani

Abstract:

Heavy metals such as Mercury are toxic elements that enter the environment through different ways and endanger the environment, plants, animals, and humans’ health. Microbial activities reduce the amount of heavy metals. Therefore, an effective mechanism to eliminate heavy metals in the nature and factory slops, is using bacteria living in polluted areas. Karun River in Khuzestan Province in Iran has been always polluted by heavy metals as it is located among different industries in the region. This study was performed based on the data from sampling water and sediments of four stations across the river during the four seasons of a year. The isolation of resistant bacteria was performed through enrichment and direct cultivation in a solid medium containing mercury. Various bacteria such as Pseudomonas sp., Serratia Marcescens, and E.coli were identified as mercury-resistant bacteria. The power of these bacteria to remove mercury varied from 28% to 86%, with strongest power belonging to Pseudomonas sp. isolated in spring making a good candidate to be used for mercury biological removal from factory slops.

Keywords: bacteria, Karun River, mercury, biological removal, mercury-resistant

Procedia PDF Downloads 263
1031 Examples from a Traditional Sismo-Resistant Architecture

Authors: Amira Zatir, Abderahmane Mokhtari, Amina Foufa, Sara Zatir

Abstract:

It exists in several regions in the world, of numerous historic monuments, buildings and housing environment, built in traditional ways which survive for earthquakes, even in zones where the seismic risk is particularly raised. These constructions, stemming from vernacular architecture, allow, through their resistances in the time earthquakes, to identify the various sismo-resistant "local" techniques. Through the examples and the experiences presented, the remark which can be made, is that in the traditional built, two major principles in a way opposite, govern the constructions in earthquake-resistant. It is about the very big flexibility, whom answer very light constructions, like the Japanese wooden constructions, Turkish and even Chinese; that of the very big rigidity to which correspond constructions in masonry in particular stone, more or less heavy and massive, which we meet in particular in the Mediterranean Basin, and in the historic sanctuary of Machu Pacchu. In it sensible and well-reflected techniques of construction are added, of which the use of the humble materials such as the earth and the adobe. The ancient communities were able to face the seismic risks, thanks to them know-how reflected in their intelligently designed constructions, testifying of a local seismic culture.

Keywords: earthquake, architecture, traditional, construction, resistance

Procedia PDF Downloads 395
1030 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 77
1029 Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed

Authors: C. Miranda, R. Soares, S. Cunha, L. Ferreira, G. Igrejas, P. Poeta

Abstract:

Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria.

Keywords: antibiotic resistance, enterococci, feed, ornamental animals

Procedia PDF Downloads 175
1028 Evaluation of Broad Leaf Weed Herbicides on Weed Control and Productivity of Wheat (Triticum Aestivum L.)

Authors: Kassahun Zewdie

Abstract:

-- A field experiment was conducted at Holetta research center and farmers fields during 2017 and 2018 to determine the effects of haulauxifen-methyl + florasulam (QULEX 200 WG) on broadleaf weeds in wheat. The design was a Randomized Complete Block with three replications. The treatments were included haulauxifen-Methyl + florasulam @ 25gm, 50gm and 75gm ha-1, (King-D) 2, 4-D dimethyl amine @1.0 L ha-1, 2, 4-Dichlorophenoxy acetic acid @1.0 L ha-1 rate (standard check), farmers practice twice hand weeding (25-30 and 55-60) days after sowing and weedy check. Herbicides were applied with knapsack sprayer with a spray volume of 200 L ha-1. The wheat variety “Denda” was sown at 20 cm spacing. The recommended rate of fertilizer was applied. Weed density and biomass were recorded at (25-30 and 55-60) days after sowing. The results revealed that post emergence application of haulauxifen-methyl + florasulam @50gm ha-1 had a significant (P<0.05) effect on Guizotia scabra, Polygonum nepalense, Plantago lanceolata, Galinsoga parviflora, Sonchus spp., Galium spurium, Amaranthus hybridus, Raphanus raphanistrum and Medicago polymorpha population. The magnitude ranged from two to four folds when comparing with weed densities recorded in the unweeded plot. The grain yield harvested from the untreated check plot was significantly lower than the rest treatments. The grain yield was improved by 17.3% over the standard check with better performance.

Keywords: broadleaf, grass, weeds, control

Procedia PDF Downloads 159
1027 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis

Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi

Abstract:

New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods. A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.

Keywords: isoniazid, MODS assay, MDR-TB, rifampin

Procedia PDF Downloads 290
1026 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline

Procedia PDF Downloads 177
1025 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.

Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT

Procedia PDF Downloads 433
1024 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits

Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi

Abstract:

Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.

Keywords: blast resistant, diversity analysis, heritability, upland rice

Procedia PDF Downloads 350
1023 Evolution of Antimicrobial Resistance in Shigella since the Turn of 21st Century, India

Authors: Neelam Taneja, Abhishek Mewara, Ajay Kumar

Abstract:

Multidrug resistant shigellae have emerged as a therapeutic challenge in India. At our 2000 bed tertiary care referral centre in Chandigarh, North India, which caters to a large population of 7 neighboring states, antibiotic resistance in Shigella is being constantly monitored. Shigellae are isolated from 3 to 5% of all stool samples. In 1990 nalidixic acid was the drug of choice as 82%, and 63% of shigellae were resistant to ampicillin and cotrimoxazole respectively. Nalidixic acid resistance emerged in 1992 and rapidly increased from 6% during 1994-98 to 86% by the turn of 21st century. In the 1990s, the WHO recommended ciprofloxacin as the drug of choice for empiric treatment of shigellosis in view of the existing high level resistance to agents like chloramphenicol, ampicillin, cotrimoxazole and nalidixic acid. First resistance to ciprofloxacin in S. flexneri at our centre appeared in 2000 and rapidly rose to 46% in 2007 (MIC>4mg/L). In between we had an outbreak of ciprofloxacin resistant S.dysenteriae serotype 1 in 2003. Therapeutic failures with ciprofloxacin occurred with both ciprofloxacin-resistant S. dysenteriae and ciprofloxacin-resistant S. flexneri. The severity of illness was more with ciprofloxacin-resistant strains. Till 2000, elsewhere in the world ciprofloxacin resistance in S. flexneri was sporadic and uncommon, though resistance to co-trimoxazole and ampicillin was common and in some areas resistance to nalidixic acid had also emerged. Fluoroquinolones due to extensive use and misuse for many other illnesses in our region are thus no longer the preferred group of drugs for managing shigellosis in India. WHO presently recommends ceftriaxone and azithromycin as alternative drugs to fluoroquinolone-resistant shigellae, however, overreliance on this group of drugs also seems to soon become questionable considering the emerging cephalosporin-resistant shigellae. We found 15.1% of S. flexneri isolates collected over a period of 9 years (2000-2009) resistant to at least one of the third-generation cephalosporins (ceftriaxone/cefotaxime). The first isolate showing ceftriaxone resistance was obtained in 2001, and we have observed an increase in number of isolates resistant to third generation cephalosporins in S. flexneri 2005 onwards. This situation has now become a therapeutic challenge in our region. The MIC values for Shigella isolates revealed a worrisome rise for ceftriaxone (MIC90:12 mg/L) and cefepime (MIC90:8 mg/L). MIC values for S. dysenteriae remained below 1 mg/L for ceftriaxone, however for cefepime, the MIC90 has raised to 4 mg/L. These infections caused by ceftriaxone-resistant S. flexneri isolates were successfully treated by azithromycin at our center. Most worrisome development in the present has been the emergence of DSA(Decreased susceptibility to azithromycin) which surfaced in 2001 and has increased from 4.3% till 2011 to 34% thereafter. We suspect plasmid-mediated resistance as we detected qnrS1-positive Shigella for the first time from the Indian subcontinent in 2 strains from 2010, indicating a relatively new appearance of this PMQR determinant among Shigella in India. This calls for a continuous and strong surveillance of antibiotic resistance across the country. The prevention of shigellosis by developing cost-effective vaccines is desirable as it will substantially reduce the morbidity associated with diarrhoea in the country

Keywords: Shigella, antimicrobial, resistance, India

Procedia PDF Downloads 211
1022 Inheritance, Stability, and Validation of Provitamin a Markers in Striga Hermonthica-Resistant Maize

Authors: Fiston Masudi Tambwe, Lwanga Charles, Arfang Badji, Unzimai Innocent

Abstract:

The development of maize varieties combining Provitamin A (PVA), high yield, and Striga resistance is an effective and affordable strategy to contribute to food security in sub-Saharan Africa, where maize is a staple food crop. There has been limited research on introgressing PVA genes into Striga-resistant maize genotypes. The objectives of this study were to: i) determine the mode of gene action controlling PVA carotenoid accumulation in Striga-resistant maize, ii) identify Striga-resistant maize hybrids with high PVA content and stable yield, and iii) validate the presence of PVA functional markers in offspring. Six elite, Striga-resistant inbred females were crossed with six high-PVA inbred males in a North Carolina Design II and their offspring were evaluated in four environments, following a 5x8 alpha lattice design with four hybrid checks. Results revealed that both additive and non-additive gene action control carotenoid accumulation in the present study, with a predominance of non-additive gene effects for PVA. Hybrids STR1004xCLHP0352 and STR1004xCLHP0046 - identified as Striga-resistant because they supported fewer Striga plants – were the highest-yielding genotypes with a moderate PVA concentration of 5.48 and 5.77 µg/g, respectively. However, those two hybrids were not stable in terms of yield across all environments. Hybrid STR1007xCLHP0046, however, supported fewer Striga plants, had a yield of 4.52 T/ha, a PVA concentration of 4.52 µg/g, and was also stable. Gel-based marker systems of CrtRB1 and LCYE were used to screen the hybrids and favorable alleles of CrtRB1 primers were detected in 20 hybrids, confirming good levels of PVA carotenoids. Hybrids with favorable alleles of LCYE had the highest concentration of non-PVA carotenoids. These findings will contribute to the development of high-yielding PVA-rich maize varieties in Uganda.

Keywords: gene action, stability, striga resistance, provitamin A markers, beta-carotene hydroxylase 1, CrtRB1, beta-carotene, beta-cryptoxanthin, lycopene epsilon cyclase, LCYE

Procedia PDF Downloads 45
1021 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 188
1020 Antibacterial Activities of Lactic Acid Bacteria on Potential Multidrug - Resistant Pathogens Isolated from Rabbit

Authors: Checkfaith I. Aizebeoje, Temitope O. Lawal, Bolanle A. Adeniyi

Abstract:

The overuse and abuse of antibiotics in treating zoonotic infections in humans and opportunistic infections in rabbit has contributed to the increase in antimicrobial drug resistance, therefore, an alternative to antibiotics is needed in treating these infections. The study was carried out to determine the antimicrobial activity of lactic acid bacteria (LAB) isolated from rabbit’s faeces against multidrug-resistant (MDR) pathogens isolated from the same rabbit. Twelve faecal samples and twelve swabs from fur samples were randomly collected aseptically from apparently healthy rabbits from Ajibode, Ibadan and University of Ibadan research farm in Ibadan, Oyo state, Nigeria. Lactic acid bacteria and multidrug-resistant pathogens were isolated using appropriate agar media and identified by partial sequencing of the 16SrRNA gene. Antibiotic susceptibility pattern of isolated bacteria and LAB were determined by the agar diffusion method. The antibacterial activity of the LAB against the test pathogens was determined using the agar overlay and agar diffusion methods. The pathogens Myroides gitamensis, Citrobacter rodentium, Acinetobacter johnsonii, Enterobacter oryzendophyticus and Serratia marcescens as well as twenty-eight (28) species of LAB belonging to Acetobacter and Lactobacillus genera were identified and characterized. Lactobacillus plantarum had the highest (60.71%) occurrence of the LAB. Viable cells and cell free supernatant (CFS) of isolated LAB inhibited the growth of the test organisms with the largest zone of inhibition (40 mm) produced by Lactobacillus plantarum against Citrobacter rodentium. This study showed that LAB from rabbit possess considerable antibacterial activity against multidrug-resistant bacteria from the same environment.

Keywords: antibacterial activities, cell-free supernatant, lactic acid bacteria; multidrug-resistant pathogens, rabbits’ faeces

Procedia PDF Downloads 103
1019 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 73
1018 Phytochemistry and Biological Activity of Extracts of the Red Raspberry Rubus rosifolius

Authors: Theresa Campbell, Camille Bowen-Forbes, William Aalbersberg

Abstract:

Differences in the sensory properties of two subtly distinct varieties of Rubus rosifolius lead to the examination of their anthocyanin, essential oil and polyphenol profiles. In both cases, notable differences were identified. Pelargonidin-3-rhutinoside (17.2 mg/100 g FW) and Cyanidin-3-glucoside (66.2 mg/100g FW) proved to be the dominant anthocyanins in the red and wine red varieties respectively. Linalool and terpineol were the major constituents of the essential oil from the red variety; however, those of the wine red variety are unidentified. In regard to phenolic compounds, caffeic acid and quercetin were in a higher concentration in the red variety (1.85 and 0.73 mg/100g FW respectively, compared to 1.22 and 0.34 mg/100g FW respectively in the wine red fruits); while ellagic acid and ferulic acid were of a higher concentration in the wine red variety (0.92 and 0.84mg/100g FW respectively, compared to 0.15 and 0.48 mg/100g FW respectively in the red variety). The methanol extract of both fruit varieties showed great antioxidant activity. Analysis of the antimicrobial activity of the fruit extracts against the growth of drug resistant pathogens revealed that they are active against methicillin resistant S. aureus (MRSA), rifampicin resistant S. aureus (RRSA), wild-type S. aureus (WTSA) and vancomycin-resistant Enterococcus faecium (VREF). Activity was also reported against several food-borne pathogens including two strains of E. coli, L. monocytogenes and Enterobacter aerogenes. The cytotoxicity of the various extracts was assessed and the essential oil extracts exhibited superior activity. The phenolic composition and biological activity of the fruits indicate that their consumption is beneficial to health and also that their incorporation into functional foods and nutraceuticals should be considered.

Keywords: phytochemicals, antimicrobial, cytotoxic, Rubus rosifolius

Procedia PDF Downloads 364
1017 Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils

Authors: Hak-Ryul Kim, Hyung-Geun Lee, Qi Long, Ching Hou

Abstract:

Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications.

Keywords: biocatalysis, antimicrobial agent, multidrug-resistant bacteria, vegetable oil

Procedia PDF Downloads 179
1016 RNA Expression Analysis of Mycobacterial Methyltransferases Genes in Different Resistant Strains of Mycobacterium Tuberculosis

Authors: Seyed Davar Siadat, Samira Tarashi, Abolfazl Fateh, Arfa Moshiri

Abstract:

Background: The global health issue of tuberculosis (TB) still affects patients in every country. TB control may not be as effective as it should be, especially when resistant strains are involved. In this regard, mycobacterial MTases play a major role in tuberculosis, but the mechanisms underlying their function have yet to be fully deciphered. Methods: Five resistant isolates of M.tb were accumulated. As a reference strain, M.tb H37Rv (ATCC 27249) was used. For this analysis, seven putative mycobacterial MTase genes (Rv0645c, Rv1694, Rv2966c, Rv3919c, Rv2756c, Rv1988, and Rv3263), as well as Rv1392 as SAM synthase, were selected. Comparing mutations and expression levels of MTases in different strains was accomplished by PCR-sequencing and qRT-PCR. The relative expression levels of these genes were calculated using the 2 -ΔΔCt method. Results: The Rv3919c gene (T to G in codon 341) and Rv1392 gene (G to A in codon 97) were the only mutations found in the INHR strain. In all sensitive and resistant isolates, Rv0645c, Rv3263, Rv2756c, and Rv2966c were overexpressed. However, the expression of Rv1988 and Rv3919c decreased in the sensitive strains, whereas the expression of Rv1694 increased. There was also a decreased expression of Rv1392 in the INHR isolate. Conclusion: The presence of mycobacterial MTases as well as resistance to antibiotics were found to be correlated in M.tb strains. Undoubtedly, there are some MTases that are associated with the virulence process. It is necessary to conduct additional studies to fully explore the impact of mycobacterial MTases within specific strains of M.tb to develop novel diagnostic and treatment strategies.

Keywords: mycobacterium tuberculosis, drug resistance, methyltransferases, s-adenosylmethionine

Procedia PDF Downloads 80
1015 Lamivudine Continuation/Tenofovir Add-on Adversely Affects Treatment Response among Lamivudine Non-Responder HIV-HBV Co-Infected Patients from Eastern India

Authors: Ananya Pal, Neelakshi Sarkar, Debraj Saha, Dipanwita Das, Subhashish Kamal Guha, Bibhuti Saha, Runu Chakravarty

Abstract:

Presently, tenofovir disoproxil fumurate (TDF) is the most effective anti-viral agent for the treatment of hepatitis B virus (HBV) in individuals co-infected with HIV and HBV as TDF has activity to suppress both wild-type and lamivudine (3TC)-resistant HBV. However, suboptimal response to TDF was reported in HIV-HBV co-infected individuals with prior 3TC therapy from different countries recently. The incidence of 3TC-resistant HBV strains is quite high in HIV-HBV co-infected patients experiencing long-term anti-retroviral therapy (ART) in eastern India. In spite of this risk, most of the patients with long-term 3TC treatment are continued with the same anti-viral agent in this country. Only a few have received TDF in addition to 3TC in the ART regimen since TDF has been available in India for the treatment of HIV-infected patients in 2012. In this preliminary study, we investigated the virologic and biochemical parameters among HIV-HBV co-infected patients who are non-responders to 3TC treatment during the continuation of 3TC or TDF add-on to 3TC in their ART regimen. Fifteen HIV-HBV co-infected patients who experienced long-term 3TC (mean duration months 36.87 ± 24.08 months) were identified with high HBV viremia ( > 20,000 IU/ml) or harbouring 3TC-resistant HBV. These patients receiving ART from School of Tropical Medicine Kolkata, the main ART centre in eastern India were followed-up semi-annually for next three visits. Different virologic parameters including quantification of plasma HBV load by real-time PCR, detection of hepatitis B e antigen (HBeAg) by commercial ELISA and anti-viral resistant mutations by sequencing were studied. During three follow-up among study subjects, 86%, 47%, and 43% had 3TC-mono-therapy (mean treatment-duration 41.54±18.84, 49.67±11.67, 54.17±12.37 months respectively) whereas 14%, 53%, and 57% experienced TDF in addition to 3TC (mean treatment duration 4.5±2.12, 16.56±11.06, and 23±4.07 months respectively). Mean CD4 cell-count in patients receiving 3TC was tended to be lower during third follow-up as compared to the first and the second [520.67±380.30 (1st), 454.8±196.90 (2nd), and 397.5±189.24 (3rd) cells/mm3) and similar trend was seen in patients experiencing TDF in addition to 3TC [334.5±330.218 (1st), 476.5±194.25 (2nd), and 461.17±269.89 (3rd) cells/mm3]. Serum HBV load was increased during successive follow-up of patients with 3TC-mono-therapy. Initiation of TDF lowered serum HBV-load among 3TC-non-responders at the time of second visit ( < 2,000 IU/ml), interestingly during third follow-up, mean HBV viremia increased >1 log IU/ml (mean 3.56±2.84 log IU/ml). Persistence of 3TC-resistant double and triple mutations was also observed in both the treatment regimens. Mean serum alanine aminotransferase remained elevated in these patients during this follow-up study. Persistence of high HBV viraemia and 3TC-resistant mutation in HBV during the continuation of 3TC might lead to major public health threat in India. The inclusion of TDF in the ART regimen of 3TC non-responder HIV-HBV co-infected patients showed adverse treatment response in terms of virologic and biochemical parameters. Therefore, serious attention is necessary for proper management of long-term 3TC experienced HIV-HBV co-infected patients with high HBV viraemia or 3TC-resistant HBV mutants in India.

Keywords: HBV, HIV, TDF, 3TC-resistant

Procedia PDF Downloads 346