Search results for: gamma sterilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 477

Search results for: gamma sterilization

387 Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors

Authors: Waleed K. Saib, Abdulsalam M. Alhawsawi, Essam Banoqitah

Abstract:

The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs.

Keywords: PMT, radiation, radiation detection, scintillation detectors, silicon photomultiplier, spectrometer

Procedia PDF Downloads 137
386 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training

Authors: Yuchien Lin

Abstract:

This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.

Keywords: meditation, EEG, emotion regulation, gamma activity

Procedia PDF Downloads 190
385 Synthesis and Thermoluminescence Study of Nanocrystalline Radiation Dosimeter CaSO₄:Ce/Sm/Dy

Authors: Anant Pandey, Kanika Sharma, Vibha Chopra, Shaila Bahl, Pratik Kumar, S. P. Lochab, Birendra Singh

Abstract:

This paper reports the thermoluminescence (TL) properties of nanocrystalline CaSO₄ activated by Ce, Sm, and Dy. TL properties are investigated by chiefly changing the dopant element and also by varying the concentration of the dopant elements (from 0.05 mol % to 0.5 mol %) so as to establish the optimized dopant concentration for each of the activators. The method of salt preparation used is the typical chemical co-precipitation method and the technique used for characterization of the prepared samples is the X-Ray Diffraction (XRD) technique. Further, the phosphors are irradiated with gamma radiation from Co-60 (1.25 MeV) source (dose range- 30 Gy to 500 Gy). The optimized concentration (vis-a-vis TL peak intensity) of activator for CaSO₄:Ce is found to be 0.2 mol %, for CaSO₄:Sm it is 0.1 mol % and for CaSO₄:Dy it is 0.2 mol %. Further, the primary study of the TL response curves for all the three phosphors confirms linearity in the studied dose range (i.e., 30 Gy to 500 Gy). Finally, CaSO₄:Dy was also studied for its energy dependence property which plays an important role in defining the utility of a phosphor for dosimetric applications. The range of doses used for the energy dependence study was from 30 Gy to 500 Gy from Cs-137 (0.662 MeV). The nano-phosphors showed potential to be used as radiation dosimeter in the studied range of gamma radiation and thus must be studied for a wider range of doses.

Keywords: gamma radiation, nanocrystalline, radiation dosimetry, thermoluminescence

Procedia PDF Downloads 158
384 Distribution of Gamma-Radiation Levels in Core Sediment Samples in Gulf of İzmir, Eastern Aegean Sea, Turkey

Authors: D. Kurt, İ. F. Barut, Z. Ü. Yümün, E. Kam

Abstract:

After development of the industrial revolution, industrial plants and settlements have spread widely on the sea coasts. This concentration also brings environmental pollution in the sea. This study focuses on the Gulf of İzmir where is located in West of Turkey and it is a fascinating natural gulf of the Eastern Aegean Sea. Investigating marine current sediment is extremely important to detect pollution. Natural radionuclides’ pollution of the marine environment which is also known as a significant environmental anxiety. Ground drilling cores (the depth of each sediment is variant) were collected from the Gulf of İzmir’s four different locations which were Karşıyaka, İnciraltı, Çeşmealtı and Bayraklı. These sediment cores were put in preserving bags with weight around 1 kg, and they were dried at room temperature in a week for moisture removal. Then, they were sieved with 1 mm sieve holes, and finally these powdered samples were relocation to polyethylene Marinelli beakers of 100 ml versions. Each prepared sediment was waited to reach radioactive equilibrium between uranium and thorium for 40 days. Gamma spectrometry measurements were settled using a HPG (High- Purity Germanium) semiconductor detector. Semiconductor detectors are very good at separating power of the energy, they are easily able to differentiate peaks that are pretty close to each other. That is why, gamma spectroscopy’s usage is common for the determination of the activities of U - 238, Th - 232, Ra - 226, Cr - 137 and K - 40 in Bq kg⁻¹. In this study, the results display that the average concentrations of activities’ values are in respectively; 2.2 ± 1.5 Bq/ kg⁻¹, 0.98 ± 0.02 Bq/ kg⁻¹, 8 ± 0.96 Bq/ kg⁻¹, 0.93 ± 0.14 Bq/ kg⁻¹, and 76.05 ± 0.93 Bq/ kg⁻¹. The outcomes of the study are able to be used as a criterion for forthcoming research and the obtained data would be pragmatic for radiological mapping of the precise areas.

Keywords: gamma, Gulf of İzmir (Eastern Aegean Sea-Turkey), natural radionuclides, pollution

Procedia PDF Downloads 243
383 Effect of Pack Aluminising Conditions on βNiAl Coatings

Authors: A. D. Chandio, P. Xiao

Abstract:

In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a γ’-Ni3Al in comparison to the CMSX-4 alloy that is βNiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of γ-Ni/γ’-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 °C, thereafter reduction was observed. This was attributed to the change in coating activities.

Keywords: βNiAl, in-situ CVD, CT, CMSX-4, Ni, microstructure

Procedia PDF Downloads 213
382 Degradation of Emerging Pharmaceuticals by Gamma Irradiation Process

Authors: W. Jahouach-Rabai, J. Aribi, Z. Azzouz-Berriche, R. Lahsni, F. Hosni

Abstract:

Gamma irradiation applied in removing pharmaceutical contaminants from wastewater is an effective advanced oxidation process (AOP), considered as an alternative to conventional water treatment technologies. In this purpose, the degradation efficiency of several detected contaminants under gamma irradiation was evaluated. In fact, radiolysis of organic pollutants in aqueous solutions produces powerful reactive species, essentially hydroxyl radical ( ·OH), able to destroy recalcitrant pollutants in water. Pharmaceuticals considered in this study are aqueous solutions of paracetamol, ibuprofen, and diclofenac at different concentrations 0.1-1 mmol/L, which were treated with irradiation doses from 3 to 15 kGy. The catalytic oxidation of these compounds by gamma irradiation was investigated using hydrogen peroxide (H₂O₂) as a convenient oxidant. Optimization of the main parameters influencing irradiation process, namely irradiation doses, initial concentration and oxidant volume (H₂O₂) were investigated, in the aim to release high degradation efficiency of considered pharmaceuticals. Significant modifications attributed to these parameters appeared in the variation of degradation efficiency, chemical oxygen demand removal (COD) and concentration of radio-induced radicals, confirming them synergistic effect to attempt total mineralization. Pseudo-first-order reaction kinetics could be used to depict the degradation process of these compounds. A sophisticated analytical study was released to quantify the detected radio-induced radicals (electron paramagnetic resonance spectroscopy (EPR) and high performance liquid chromatography (HPLC)). All results showed that this process is effective for the degradation of many pharmaceutical products in aqueous solutions due to strong oxidative properties of generated radicals mainly hydroxyl radical. Furthermore, the addition of an optimal amount of H₂O₂ was efficient to improve the oxidative degradation and contribute to the high performance of this process at very low doses (0.5 and 1 kGy).

Keywords: AOP, COD, hydroxyl radical, EPR, gamma irradiation, HPLC, pharmaceuticals

Procedia PDF Downloads 151
381 Influence of Gamma-Radiation Dosimetric Characteristics on the Stability of the Persistent Organic Pollutants

Authors: Tatiana V. Melnikova, Lyudmila P. Polyakova, Alla A. Oudalova

Abstract:

As a result of environmental pollution, the production of agriculture and foodstuffs inevitably contain residual amounts of Persistent Organic Pollutants (POP). The special attention must be given to organic pollutants, including various organochlorinated pesticides (OCP). Among priorities, OCP is DDT (and its metabolite DDE), alfa-HCH, gamma-HCH (lindane). The control of these substances spends proceeding from requirements of sanitary norms and rules. During too time often is lost sight of that the primary product can pass technological processing (in particular irradiation treatment) as a result of which transformation of physicochemical forms of initial polluting substances is possible. The goal of the present work was to study the OCP radiation degradation at a various gamma-radiation dosimetric characteristics. The problems posed for goal achievement: to evaluate the content of the priority of OCPs in food; study the character the degradation of OCP in model solutions (with micro concentrations commensurate with the real content of their agricultural and food products) depending upon dosimetric characteristics of gamma-radiation. Qualitative and quantitative analysis of OCP in food and model solutions by gas chromatograph Varian 3400 (Varian, Inc. (USA)); chromatography-mass spectrometer Varian Saturn 4D (Varian, Inc. (USA)) was carried out. The solutions of DDT, DDE, alpha- and gamma- isomer HCH (0.01, 0.1, 1 ppm) were irradiated on "Issledovatel" (60Co) and "Luch - 1" (60Co) installations at a dose 10 kGy with a variation of dose rate from 0.0083 up to 2.33 kGy/sec. It was established experimentally that OCP residual concentration in individual samples of food products (fish, milk, cereal crops, meat, butter) are evaluated as 10-1-10-4 mg/kg, the value of which depends on the factor-sensations territory and natural migration processes. The results were used in the preparation of model solutions OCP. The dependence of a degradation extent of OCP from a dose rate gamma-irradiation has complex nature. According to our data at a dose 10 kGy, the degradation extent of OCP at first increase passes through a maximum (over the range 0.23 – 0.43 Gy/sec), and then decrease with the magnification of a dose rate. The character of the dependence of a degradation extent of OCP from a dose rate is kept for various OCP, in polar and nonpolar solvents and does not vary at the change of concentration of the initial substance. Also in work conditions of the maximal radiochemical yield of OCP which were observed at having been certain: influence of gamma radiation with a dose 10 kGy, in a range of doses rate 0.23 – 0.43 Gy/sec; concentration initial OCP 1 ppm; use of solvent - 2-propanol after preliminary removal of oxygen. Based on, that at studying model solutions of OCP has been established that the degradation extent of pesticides and qualitative structure of OCP radiolysis products depend on a dose rate, has been decided to continue researches radiochemical transformations OCP into foodstuffs at various of doses rate.

Keywords: degradation extent, dosimetric characteristics, gamma-radiation, organochlorinated pesticides, persistent organic pollutants

Procedia PDF Downloads 227
380 Biological Studies on Producing Samoli Bread Supplement with Irradiated Sunflower Flour by Gamma Rays

Authors: Amal. N. Al-Kuraieef

Abstract:

Smoli bread was made by supplementation sunflower flour which was prepared from sunflower (Dahr-EL-Haea) gray after hilling and milling, flour was irradiated by two doses (5 and 10 kGy). After that, the ratios of irradiated sunflower flour were 5 and 10%. All samples of samoli bread were examined for organoleptic and biological evaluation. Biological assay (PER, NPU, FE, DC and BV) was carried out on rats fed 5 and 10% irradiated and non-irradiated sunflower Samoli bread. Results obtained showed that, total lipids, cholesterol and triglycerides were reduced comparable, to that of casein. Also, figures of the biological evaluations were higher than those of the control samoli bread and improved its nutritive values.

Keywords: gamma rays, sunflower, samoli bread, cholesterol, lipids, triglycerides

Procedia PDF Downloads 137
379 Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shamsollah Alijanlou

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, nano gamma alumina

Procedia PDF Downloads 295
378 Plasma Electrolytes and Gamma Glutamyl Transpeptidase (GGT) Status in Dementia Subjects in Southern Nigeria

Authors: Salaam Mujeeb, Adeola Segun, Abdullahi Olasunkanmi

Abstract:

Dementia is becoming a major concern as the world population is increasing and elderly populations are being neglected. Liver and kidney Diseases have been implicated as risk factors in the etiology of Dementia. This study, therefore, evaluates the plasma Gamma Glutamyl Transferase (GGT) activity and plasma Electrolytes in other to find an association between the biomarkers and Dementia. The subjects (38) were age and sex-matched with their corresponding controls and structured questionnaires were used to obtain medical information. Using spectrophotometric and ion selective Electrode techniques respectively, we found and elevated GGT activity in the Dementia Subjects. Remarkably, no association was found between the plasma Electrolytes level and Dementia subjects. It was also observed that severity of Dementia worsens with age. Moreover, the condition of the dementia subjects worsens with reducing weight. Furthermore, the presence of Comorbidity e.g. Hypertension, Obesity, Diabetes and Habits like Smoking, Drugs and Alcohol consumption interferes with Electrolyte balance. Weight loss monitoring and IBM check are advised in Elderly individuals particularly females as they may be inductive of early or future cognitive impairments. Therefore, it might be useful as an early detection tool. Government and society should invest more on the Geriatric population by establishing Old people's home and providing social care services.

Keywords: clinical characteristics, dementia, electrolytes, gamma glutamyl transpeptidase, GGT

Procedia PDF Downloads 310
377 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 82
376 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors

Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia

Abstract:

In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.

Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions

Procedia PDF Downloads 169
375 Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shallah Alijanlo

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO2, CO, NO2, NO, and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, polyacryl company, nano gamma alumina

Procedia PDF Downloads 161
374 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi

Abstract:

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

Keywords: frailty model, latent variables, liver cirrhosis, parametric distribution

Procedia PDF Downloads 242
373 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling

Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos

Abstract:

Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.

Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood

Procedia PDF Downloads 49
372 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 132
371 Radiation Protection Study for the Assessment of Mixed Fields Ionizing Radiation

Authors: Avram Irina, Coiciu Eugenia-Mihaela, Popovici Mara-Georgiana, Mitu Iani Octavian

Abstract:

ELI-NP stands as a cutting-edge facility globally, hosting unique radiological setups. It conducts experiments leveraging high-power lasers capable of producing extremely brief 10 PW pulses on two fronts. Moreover, it houses an exceptional gamma beam system with distinctive spectral characteristics. The facility hosts various experiments across designated experimental areas, encompassing ultra-short high-power laser tests, high-intensity gamma beam trials, and combined experiments utilizing both setups. The facility hosts a dosimetry laboratory, which recently obtained accreditation, where the radiation safety group employs a host of different types of detectors for monitoring the personnel, environment, and public exposure to ionizing radiation generated in experiments performed. ELI-NP's design was shaped by radiological protection assessments conducted through Monte Carlo simulations. The poster exemplifies an assessment conducted using the FLUKA code in an experimental area where a high-power laser system is implemented, and the future diagnostic system for variable energy gamma beams will soon be operational.

Keywords: radiation protection, Monte Carlo simulation, FLUKA, dosimetry

Procedia PDF Downloads 45
370 Mass Rearing and Effects of Gamma Irradiation on the Pupal Mortality and Reproduction of Citrus Leaf Miner Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)

Authors: Shiva Osouli, Maryam Atapour, Mehrdad Ahmadi, Shima Shokri

Abstract:

Citrus leaf miner (Phyllocnistis citrella Stainton) is native to Asia and one of the most serious pests of Iran’s citrus nursery stocks. In the present study, the possibility of insect mass rearing on four various citrus hosts and the effects of gamma irradiation on the pupal mortality and reproduction of this pest were studied. Trifoliate orange and grapefruit showed less infection, while the number of pupae in Valencia oranges and sweet lemons cages was so high. There was not any significant difference between weight of male and female pupae among different citrus hosts, but generally the weight of male pupae was less than females. Use of Valencia orange or sweet lemons seedlings in especial dark emergence and oviposition cages could be recommended for mass rearing of this pest. In this study, the effects of gamma radiation at doses 100 to 450 Gy on biological and reproductive parameters of the pest has been determined. The results show that mean percent of pupal mortality increased with increasing doses and reached to 28.67% at 450 Gy for male pupae and 38.367% for female pupae. Also, the mean values of this parameter were higher for irradiated female, which indicated the higher sensitivity of this sex. The gamma ray irradiation from 200 and 300 Gy caused decrease in male and female adult moth longevity, respectively. The eggs were laid by emerged females, and their hatchability was decreased by increasing gamma doses. The fecundity of females in both combinations of crosses (irradiated male × normal female and irradiated female × normal male) did not differ, but fertility of laid eggs by irradiated female × normal male affected seriously and the mean values of this parameter reached to zero at 300 Gy. The hatchability percentage of produced eggs by normal female × irradiated male at 300 Gy was 23.29% and reached to less than 2 % at 450 Gy as the highest tested dose. The results of this test show that females have more radio-sensitivity in comparison to males.

Keywords: citrus leaf miner, Phyllocnistis citrella, citrus hosts, mass rearing, Sterile Insect Technique (SIT)

Procedia PDF Downloads 154
369 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia

Authors: Josua Sihotang

Abstract:

Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.

Keywords: aquifer, deep groundwater potential, well devices, well logging analysis

Procedia PDF Downloads 226
368 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 121
367 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis

Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti

Abstract:

Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.

Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis

Procedia PDF Downloads 328
366 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 386
365 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel

Authors: Selami Şahin

Abstract:

In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.

Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication

Procedia PDF Downloads 376
364 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 148
363 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 110
362 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 163
361 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe

Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar

Abstract:

Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.

Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE

Procedia PDF Downloads 81
360 Development of Zero-Cement Binder Activated by Carbonation

Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang

Abstract:

Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.

Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag

Procedia PDF Downloads 445
359 Qualitative and Quantitative Analysis of Uranium in Ceramic Tiles Using Laser-Induced Breakdown Spectroscopy and Gamma-Ray Spectroscopy

Authors: Reem M. Altuwirqi, Mohja S. Summan, Entesar A. Ganash, Safia H. Hamidalddin, Tamer E. Youssef, Mohammed A. Gondal

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) technique using 1064 nm Nd: YAG laser was optimized and applied for investigating the existence of radioactive elements (uranium) in twenty-six different ceramic tiles. These tiles were collected from the local Saudi market. Qualitative and quantitative analysis for trace radioactive elements like uranium in these samples was achieved using LIBS. The plasma parameters such as temperature and electron density were calculated to confirm that the plasma generated by the tile samples under laser irradiation can be related to analyte concentrations. In order to perform a quantitative analysis, calibration curves were constructed for two uranium lines (U II (424.166 nm) and U II (424.437 nm)). The Uranium activity concentration in Bq/kg for each sample was measured. Cross-validation of LIBS results with a conventional technique such as Gamma-Ray spectroscopy was also carried out for five ceramic samples. The results show that the LIBS method is an effective way of determining radioactive elements such as uranium in ceramic tiles. Moreover, the uranium concentrations of the investigated samples were below the permissible safe limit for building materials in the majority of samples. Such LIBS system could be applied to determine the presence of natural radioactive elements in ceramic tiles and their radioactivity level rapidly to ensure that they are under the safe allowed limit.

Keywords: laser-induced breakdown spectroscopy, gamma-ray spectroscopy, natural radioactivity, uranium, ceramic tiles

Procedia PDF Downloads 147
358 Quality Assurance Comparison of Map Check 2, Epid, and Gafchromic® EBT3 Film for IMRT Treatment Planning

Authors: Khalid Iqbal, Saima Altaf, M. Akram, Muhammad Abdur Rafaye, Saeed Ahmad Buzdar

Abstract:

Objective: Verification of patient-specific intensity modulated radiation therapy (IMRT) plans using different 2-D detectors has become increasingly popular due to their ease of use and immediate readout of the results. The purpose of this study was to test and compare various 2-D detectors for dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT) with the vision to find alternative QA methods. Material and Methods: Twenty IMRT patients (12 of brain and 8 of the prostate) were planned on Eclipse treatment planning system using Varian Clinac DHX on both energies 6MV and 15MV. Verification plans of all such patients were also made and delivered to Map check2, EPID (Electronic portal imaging device) and Gafchromic EBT3. Gamma index analyses were performed using different criteria to evaluate and compare the dosimetric results. Results: Statistical analysis shows the passing rate of 99.55%, 97.23% and 92.9% for 6MV and 99.53%, 98.3% and 94.85% for 15 MV energy using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm respectively for brain, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria, the passing rate is 94.55% and 90.45% for 6MV and 95.25%9 and 95% for 15 MV energy for the case of prostate using EBT3 film. Map check 2 results shows the passing rates of 98.17%, 97.68% and 86.78% for 6MV energy and 94.87%,97.46% and 88.31% for 15 MV energy respectively for brain using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria gives the passing rate of 97.7% and 96.4% for 6MV and 98.75%9 and 98.05% for 15 MV energy for the case of prostate. EPID 6 MV and gamma analysis shows the passing rate of 99.56%, 98.63% and 98.4% for the brain, 100% and 99.9% for prostate using the same criteria as for map check 2 and EBT 3 film. Conclusion: The results demonstrate excellent passing rates were obtained for all dosimeter when compared with the planar dose distributions for 6 MV IMRT fields as well as for 15 MV. EPID results are better than EBT3 films and map check 2 because it is likely that part of this difference is real, and part is due to manhandling and different treatment set up verification which contributes dose distribution difference. Overall all three dosimeter exhibits results within limits according to AAPM report.120.

Keywords: gafchromic EBT3, radiochromic film dosimetry, IMRT verification, EPID

Procedia PDF Downloads 404