Search results for: exponential time differencing method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32768

Search results for: exponential time differencing method

32678 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 370
32677 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: M. Tiachachat, M. Mihoubi

Abstract:

The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions

Keywords: 2-associated r-Stirling numbers, the exponential partial Bell polynomials, generating function, combinatorial interpretation

Procedia PDF Downloads 110
32676 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 274
32675 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 467
32674 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river

Procedia PDF Downloads 148
32673 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations

Authors: Luke Ukpebor, C. E. Abhulimen

Abstract:

Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.

Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems

Procedia PDF Downloads 258
32672 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training

Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu

Abstract:

Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.

Keywords: exponential value, facilitate learning, gender difference, virtual reality

Procedia PDF Downloads 94
32671 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage

Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour

Abstract:

This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.

Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage

Procedia PDF Downloads 457
32670 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
32669 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
32668 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 349
32667 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network

Authors: M. Kollar, A. Zieba

Abstract:

In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.

Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay

Procedia PDF Downloads 361
32666 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method

Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito

Abstract:

In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.

Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.

Procedia PDF Downloads 493
32665 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 224
32664 Computational Modeling of Heat Transfer from a Horizontal Array Cylinders for Low Reynolds Numbers

Authors: Ovais U. Khan, G. M. Arshed, S. A. Raza, H. Ali

Abstract:

A numerical model based on the computational fluid dynamics (CFD) approach is developed to investigate heat transfer across a longitudinal row of six circular cylinders. The momentum and energy equations are solved using the finite volume discretization technique. The convective terms are discretized using a second-order upwind methodology, whereas diffusion terms are discretized using a central differencing scheme. The second-order implicit technique is utilized to integrate time. Numerical simulations have been carried out for three different values of free stream Reynolds number (ReD) 100, 200, 300 and two different values of dimensionless longitudinal pitch ratio (SL/D) 1.5, 2.5 to demonstrate the fluid flow and heat transfer behavior. Numerical results are validated with the analytical findings reported in the literature and have been found to be in good agreement. The maximum percentage error in values of the average Nusselt number obtained from the numerical and analytical solutions is in the range of 10% for the free stream Reynolds number up to 300. It is demonstrated that the average Nusselt number for the array of cylinders increases with increasing the free stream Reynolds number and dimensionless longitudinal pitch ratio. The information generated would be useful in the design of more efficient heat exchangers or other fluid systems involving arrays of cylinders.

Keywords: computational fluid dynamics, array of cylinders, longitudinal pitch ratio, finite volume method, incompressible navier-stokes equations

Procedia PDF Downloads 85
32663 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 192
32662 Analytical and Numerical Investigation of Friction-Restricted Growth and Buckling of Elastic Fibers

Authors: Peter L. Varkonyi, Andras A. Sipos

Abstract:

The quasi-static growth of elastic fibers is studied in the presence of distributed contact with an immobile surface, subject to isotropic dry or viscous friction. Unlike classical problems of elastic stability modelled by autonomous dynamical systems with multiple time scales (slowly varying bifurcation parameter, and fast system dynamics), this problem can only be formulated as a non-autonomous system without time scale separation. It is found that the fibers initially converge to a trivial, straight configuration, which is later replaced by divergence reminiscent of buckling phenomena. In order to capture the loss of stability, a new definition of exponential stability against infinitesimal perturbations for systems defined over finite time intervals is developed. A semi-analytical method for the determination of the critical length based on eigenvalue analysis is proposed. The post-critical behavior of the fibers is studied numerically by using variational methods. The emerging post-critical shapes and the asymptotic behavior as length goes to infinity are identified for simple spatial distributions of growth. Comparison with physical experiments indicates reasonable accuracy of the theoretical model. Some applications from modeling plant root growth to the design of soft manipulators in robotics are briefly discussed.

Keywords: buckling, elastica, friction, growth

Procedia PDF Downloads 190
32661 Application of a SubIval Numerical Solver for Fractional Circuits

Authors: Marcin Sowa

Abstract:

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis

Procedia PDF Downloads 206
32660 Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor

Authors: J. Sharon Mano Pappu, Sathyanarayana N. Gummadi

Abstract:

Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways.

Keywords: co-substrate, cybernetic model, diauxic growth, xylose, xylitol

Procedia PDF Downloads 329
32659 Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method

Authors: Pejman Daryabor, Kamal Mohammadi

Abstract:

In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature.

Keywords: natural frequency, functionally graded material, finite element method, thick cylinder

Procedia PDF Downloads 473
32658 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 439
32657 Attenuation Scale Calibration of an Optical Time Domain Reflectometer

Authors: Osama Terra, Hatem Hussein

Abstract:

Calibration of Optical Time Domain Reflectometer (OTDR) is crucial for the accurate determination of loss budget for long optical fiber links. In this paper, the calibration of the attenuation scale of an OTDR using two different techniques is discussed and implemented. The first technique is the external modulation method (EM). A setup is proposed to calibrate an OTDR over a dynamic range of around 15 dB based on the EM method. Afterwards, the OTDR is calibrated using two standard reference fibers (SRF). Both SRF are calibrated using cut-back technique; one of them is calibrated at our home institute (the National Institute of Standards – NIS) while the other at the National Physical Laboratory (NPL) of the United Kingdom to confirm our results. In addition, the parameters contributing the calibration uncertainty are thoroughly investigated. Although the EM method has several advantages over the SRF method, the uncertainties in the SRF method is found to surpass that of the EM method.

Keywords: optical time domain reflectometer, fiber attenuation measurement, OTDR calibration, external source method

Procedia PDF Downloads 465
32656 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
32655 Performance Evaluation of Content Based Image Retrieval Using Indexed Views

Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris

Abstract:

Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.

Keywords: content based image retrieval (CBIR), indexed view, color, image retrieval, cross correlation

Procedia PDF Downloads 470
32654 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach

Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: chaotic approach, phase space, Cao method, local linear approximation method

Procedia PDF Downloads 332
32653 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm

Authors: Dalal N. Hammod, Ekhlas K. Gbashi

Abstract:

Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.

Keywords: modified AES, randomness test, encryption time, avalanche effects

Procedia PDF Downloads 248
32652 Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for W-LED and Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Lithium Lead Alumino Borate (LiPbAlB) glasses doped with different Dy3+ ions concentration were synthesized to investigate their viability in solid state lighting (SSL) technology by melt quenching techniques. From the absorption spectra, bonding parameters (ð) were investigated to study the nature of bonding between Dy3+ ions and its surrounding ligands. Judd-Ofelt (J-O) intensity parameters (Ω = 2, 4, 6), estimated from the experimental oscillator strengths (fex) of the absorption spectral features were used to evaluate the radiative parameters of different transition levels. From the decay curves, experimental lifetime (τex) were measured and coupled with the radiative lifetime to evaluate the quantum efficiency of the as-prepared glasses. As Dy3+ ions concentration increases, decay profile changes from exponential to non-exponential through energy transfer mechanism (ETM) in turn decreasing experimental lifetime. In order to investigate the nature of ETM, non-exponential decay curves were fitted to Inkuti–Hirayama (I-H) model which further confirms dipole-dipole interaction. Among all the emission transition, 4F9/2  6H15/2 transition (483 nm) is best suitable for lasing potentialities. By exciting titled glasses in n-UV to blue regions, CIE chromaticity coordinates and Correlated Color Temperature (CCT) were calculated to understand their capability in cool white light generation. From the evaluated radiative parameters, CIE co-ordinates, quantum efficiency and confocal images it was observed that glass B (0.5 mol%) is a potential candidate for developing w-LEDs and lasers.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 216
32651 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling

Authors: Muhammad Nouman Qureshi, Muhammad Hanif

Abstract:

Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.

Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation

Procedia PDF Downloads 238
32650 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 296
32649 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 132