Search results for: equipment integrity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2195

Search results for: equipment integrity

2105 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature

Authors: Mohannad N. H. Al-Malichi

Abstract:

Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.

Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets

Procedia PDF Downloads 96
2104 Anti-Corruption, an Important Challenge for the Construction Industry!

Authors: Ahmed Stifi, Sascha Gentes, Fritz Gehbauer

Abstract:

The construction industry is perhaps one of the oldest industry of the world. The ancient monuments like the egyptian pyramids, the temples of Greeks and Romans like Parthenon and Pantheon, the robust bridges, old Roman theatres, the citadels and many more are the best testament to that. The industry also has a symbiotic relationship with other . Some of the heavy engineering industry provide construction machineries, chemical industry develop innovative construction materials, finance sector provides fund solutions for complex construction projects and many more. Construction Industry is not only mammoth but also very complex in nature. Because of the complexity, construction industry is prone to various tribulations which may have the propensity to hamper its growth. The comparitive study of this industry with other depicts that it is associated with a state of tardiness and delay especially when we focus on the managerial aspects and the study of triple constraint (time, cost and scope). While some institutes says the complexity associated with it as a major reason, others like lean construction, refers to the wastes produced across the construction process as the prime reason. This paper introduces corruption as one of the prime factors for such delays.To support this many international reports and studies are available depicting that construction industry is one of the most corrupt sectors worldwide, and the corruption can take place throught the project cycle comprising project selection, planning, design, funding, pre-qualification, tendering, execution, operation and maintenance, and even through the reconstrction phase. It also happens in many forms such as bribe, fraud, extortion, collusion, embezzlement and conflict of interest and the self-sufficient. As a solution to cope the corruption in construction industry, the paper introduces the integrity as a key factor and build a new integrity framework to develop and implement an integrity management system for construction companies and construction projects.

Keywords: corruption, construction industry, integrity, lean construction

Procedia PDF Downloads 347
2103 Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics

Authors: S. Parisi, Ch. Achillas, D. Aidonis, D. Folinas, N. Moussiopoulos

Abstract:

Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

Keywords: telecommunications container, design, case study, humanitarian logistics

Procedia PDF Downloads 428
2102 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 225
2101 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 717
2100 Stand Alone Multiple Trough Solar Desalination with Heat Storage

Authors: Abderrahmane Diaf, Kamel Benabdellaziz

Abstract:

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.

Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system

Procedia PDF Downloads 412
2099 Quality of Chilled Indigenous Ram Semen Using Multi-Species Skim Milk Based Extenders

Authors: Asaduzzaman Rimon, Pankaj Kumar Jha, Abdullah Al Mansur, Mohammad Mofizul Islam, Nasrin Sultana Juyena, Farida Yeasmin Bari

Abstract:

This study was conducted to determine the effects of multi-species skim milk based extenders on sperm quality at 5ºC with the advancement of preservation time. Altogether forty ejaculates, 8 ejaculates for each of the 5 home-made semen extenders: cow skim milk (CSM), goat skim milk (GSM), sheep skim milk (SSM), buffalo skim milk (BSM) and commercial dried skim milk (CDSM) were examined for motility, plasma membrane integrity and normal morphology % of sperm at 0, 24, 48, 72, 96 and 120 hours, respectively. Sperm motility was significantly decreased (P < 0.05) with the increase of preservation time. There were no significant difference in motility % among CSM (84.0±1.4, 82.3±2.1), GSM (84.5±1.0, 82.5±0.6) and CDSM (85.0±80.3±1.3) extenders at 0 and 24 hours, respectively. However, the motility in GSM extender was significantly higher than BSM, SSM and CDSM extender at 48, 72, 96 and 120 hours. The plasma membrane integrity % at 0 hour had no significant difference among the extenders. But, the plasma membrane integrity % in GSM (84.3±0.9, 81.8±1.3, 78.0±2.2, 74.8±0.5, 72.0±1.4) and CSM (82.8±0.5, 80.8±1.0, 78.0±1.4, 73.5±1.7, 70.3±0.5) extenders were significantly higher than BSM (81.0±1.4, 76.3±2.5, 72.5±1.7, 63.8±2.5, 54.0±4.6), SSM (78.5±1.5, 75.0±1.6, 71.5±2.4, 64.3±1.7, 56.5±2.4) and CDSM extenders (78.3±2.4, 75.8±3.9, 72.5±3.3, 64.8±1.0, 60.5±3.3) at 24, 48, 72, 96 and 120 hours, respectively. The sperm morphology % had no significant difference at 0 hour among the extenders but were significantly higher in GSM (83.0±0.8, 81.3±1.5, 79.3±1.3, 73.0±2.2, 70.3±1.3) and CSM (81.5±1.7, 79.3±1.5, 75.8±1.5, 70.3±1.3, 66.3±1.5) than BSM (79.0±1.2, 75.0±1.4, 69.5±1.7, 64.5±3.1, 56.8±2.2), SSM (79.8±1.3, 76.8±2.1, 71.3±3.0, 66.0±2.7, 60.3±4.5) and CDSM (80.0±1.6, 77.0±2.2, 72.0±2.5, 66.3±2.5, 62.0±4.0) extenders at 24, 48, 72, 96 and 120 hours, respectively. The motility, plasma membrane integrity and normal morphology % of sperm had shown no significant difference between GSM and CSM but were found to be higher in GSM extenders. In the end, we concluded from the above study that the goat milk based extenders (GSM) had optimum sperm preserving quality. However, further studies are required to validate followed by fertility rate.

Keywords: chilled semen, indigenous ram, multi-species skim milk based extenders, preservation

Procedia PDF Downloads 393
2098 Naphtha Catalytic Reform: Modeling and Simulation of Unity

Authors: Leal Leonardo, Pires Carlos Augusto de Moraes, Casiraghi Magela

Abstract:

In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment.

Keywords: catalytic reforming, modeling, simulation, petrochemical engineering

Procedia PDF Downloads 477
2097 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow

Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba

Abstract:

Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.

Keywords: interface height, liquid, velocity, flow regime, dispersed, water cut

Procedia PDF Downloads 361
2096 Optimal MRO Process Scheduling with Rotable Inventory to Minimize Total Earliness

Authors: Murat Erkoc, Kadir Ertogral

Abstract:

Maintenance, repair and overhauling (MRO) of high cost equipment used in many industries such as transportation, military and construction are typically subject to regulations set by local governments or international agencies. Aircrafts are prime examples for this kind of equipment. Such equipment must be overhauled at certain intervals for continuing permission of use. As such, the overhaul must be completed by strict deadlines, which often times cannot be exceeded. Due to the fact that the overhaul is typically a long process, MRO companies carry so called rotable inventory for exchange of expensive modules in the overhaul process of the equipment so that the equipment continue its services with minimal interruption. The extracted module is overhauled and returned back to the inventory for future exchange, hence the name rotable inventory. However, since the rotable inventory and overhaul capacity are limited, it may be necessary to carry out some of the exchanges earlier than their deadlines in order to produce a feasible overhaul schedule. An early exchange results with a decrease in the equipment’s cycle time in between overhauls and as such, is not desired by the equipment operators. This study introduces an integer programming model for the optimal overhaul and exchange scheduling. We assume that there is certain number of rotables at hand at the beginning of the planning horizon for a single type module and there are multiple demands with known deadlines for the exchange of the modules. We consider an MRO system with identical parallel processing lines. The model minimizes total earliness by generating optimal overhaul start times for rotables on parallel processing lines and exchange timetables for orders. We develop a fast exact solution algorithm for the model. The algorithm employs full-delay scheduling approach with backward allocation and can easily be used for overhaul scheduling problems in various MRO settings with modular rotable items. The proposed procedure is demonstrated by a case study from the aerospace industry.

Keywords: rotable inventory, full-delay scheduling, maintenance, overhaul, total earliness

Procedia PDF Downloads 518
2095 Study on the Factors that Causes the Malaysian Oil and Gas Equipment (OGSE) Companies being under-Developing

Authors: Low Khee Wai

Abstract:

Lossing of opportunity by Malaysian Oil and Gas Services Equipment (OGSE) companies can be a major issue in developing and sustain Malaysia’s own Oil & Gas Industry. Despite the rapid growth of Oil & Gas industry in Malaysia for the past 40 years, Malaysia still not developing sufficient OGSE companies in order to support its own Oil & Gas Industry. In examining the scenario, this study aims to identify the factors causing the under-developing of OGSE companies in Malaysia. Conceptual Review method were used to analyse the factors that cause the under-development of Malaysia OGSE. The 4 factors identified were Time, Cost, Human Resource and Stakeholder Management. This survey explained the phenomena and the challenge of the industry and translated into the factors that cause the under-developing of OGSE companies in Malaysia. Finally, it should bring awareness to the government, authorities, and stakeholder in order to improve the ecology of Oil & Gas Industry in Malaysia.

Keywords: oil & gas in Malaysia, Malaysia local oil & gas services equipment (OGSE), oil & gas project management, project performance

Procedia PDF Downloads 110
2094 Efficient Utilization of Unmanned Aerial Vehicle (UAV) for Fishing through Surveillance for Fishermen

Authors: T. Ahilan, V. Aswin Adityan, S. Kailash

Abstract:

UAV’s are small remote operated or automated aerial surveillance systems without a human pilot aboard. UAV’s generally finds its use in military and special operation application, a recent growing trend in UAV’s finds its application in several civil and non military works such as inspection of power or pipelines. The objective of this paper is the augmentation of a UAV in order to replace the existing expensive sonar (sound navigation and ranging) based equipment amongst small scale fisherman, for whom access to sonar equipment are restricted due to limited economic resources. The surveillance equipment’s present in the UAV will relay data and GPS location onto a receiver on the fishing boat using RF signals, using which the location of the schools of fishes can be found. In addition to this, an emergency beacon system is present for rescue operations and drone recovery.

Keywords: UAV, Surveillance, RF signals, fishing, sonar, GPS, video stream, school of fish

Procedia PDF Downloads 434
2093 Security in Resource Constraints: Network Energy Efficient Encryption

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.

Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC

Procedia PDF Downloads 121
2092 Designing Emergency Response Network for Rail Hazmat Shipments

Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma

Abstract:

The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.

Keywords: hazmat, rail network, stochastic programming, emergency response

Procedia PDF Downloads 154
2091 Crude Glycerol Affects Canine Spermatoa Motility: Computer Assister Semen Analysis in Vitro

Authors: P. Massanyi, L. Kichi, T. Slanina, E. Kolesar, J. Danko, N. Lukac, E. Tvrda, R. Stawarz, A. Kolesarova

Abstract:

Target of this study was the analysis of the impact of crude glycerol on canine spermatozoa motility, morphology, viability, and membrane integrity. Experiments were realized in vitro. In the study, semen from 5 large dog breeds was used. They were typical representatives of large breeds, coming from healthy rearing, regularly vaccinated and integrated to the further breeding. Semen collections were realized at the owners of animals and in the veterinary clinic. Subsequently the experiments were realized at the Department of Animal Physiology of the SUA in Nitra. The spermatozoa motility was evaluated using CASA analyzer (SpermVisionTM, Minitub, Germany) at the temperature 5 and 37°C for 5 hours. In the study, 13 motility parameters were evaluated. Generally, crude glycerol has generally negative effect on spermatozoa motility. Morphological analysis was realized using Hancock staining and the preparations were evaluated at magnification 1000x using classification tables of morphologically changed spermatozoa. Data clearly detected the highest number of morphologically changed spermatozoa in the experimental groups (know twisted tails, tail torso and tail coiling). For acrosome alterations swelled acrosomes, removed acrosomes and acrosomes with undulated membrane were detected. In this study also the effect of crude glycerol on spermatozoa membrane integrity were analyzed. The highest crude glycerol concentration significantly affects spermatozoa integrity. Results of this study show that crude glycerol has effect of spermatozoa motility, viability, and membrane integrity. Detected changes are related to crude glycerol concentration, temperature, as well as time of incubation.

Keywords: dog, semen, spermatozoa, acrosome, glycerol, CASA, viability

Procedia PDF Downloads 292
2090 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda

Authors: Charles Owenda Omulo

Abstract:

This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.

Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety

Procedia PDF Downloads 34
2089 Material Handling Equipment Selection Using Fuzzy AHP Approach

Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai

Abstract:

This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.

Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)

Procedia PDF Downloads 413
2088 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 263
2087 Improving Overall Equipment Effectiveness of CNC-VMC by Implementing Kobetsu Kaizen

Authors: Nakul Agrawal, Y. M. Puri

Abstract:

TPM methodology is a proven approach to increase Overall Equipment Effectiveness (OEE) of machine. OEE is an established method to monitor and improve the effectiveness of manufacturing process. OEE is a product of equipment availability, performance efficiency and quality performance of manufacturing operations. The paper presents a project work for improving OEE of CNC-VMC in a manufacturing industry with the help of TPM tools Kaizen and Autonomous Maintenance. The aim of paper is to enhance OEE by minimizing the breakdown and re-work, increase availability, performance and quality. The calculated OEE of bottle necking machines for 4 months is lower of 53.3%. Root Cause Analysis RCA tools like fishbone diagram, Pareto chart are used for determining the reasons behind low OEE. While Tool like Why-Why analysis is use for determining the basis reasons for low OEE. Tools like Kaizen and Autonomous Maintenance are effectively implemented on CNC-VMC which eliminate the causes of breakdown and prevent from reoccurring. The result obtains from approach shows that OEE of CNC-VMC improved from 53.3% to 73.7% which saves an average sum of Rs.3, 19,000.

Keywords: OEE, TPM, Kaizen, CNC-VMC, why-why analysis, RCA

Procedia PDF Downloads 356
2086 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel

Authors: Karthik K. R, Viswanath V, Asraff A. K

Abstract:

The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.

Keywords: FAD, j-integral, fracture, surface crack

Procedia PDF Downloads 162
2085 Resolving Increased Water-Cut in South and East Kuwait Areas through Water Knock-Out Facility Project

Authors: Sunaitan Al Mutairi, Kumar Vallatharasu, Batool Ismaeel

Abstract:

The Water Knock-Out (WKO) facility project is to handle the undesirable impact of the increasing water production rate in South and East Kuwait (S&EK) areas and break the emulsions and ensure sufficient separation of water at the new upstream facility, to reduce the load on the existing separation equipment in the Gathering Centers (GC). As the existing separation equipment in the Gathering Centers are not efficient to separate the emulsions, the Compact Electrostatic Coalescer (CEC) and Vessel Internal Electrostatic Coalescer (VIEC) technologies have been selected for enhancing the liquid-liquid separation by using the alternating voltage/frequency on electrical fields, to handle the increasing water-cut in S&EK. In the Compact Electrostatic Coalescer (CEC) technology method, the CEC equipment is installed downstream of the inlet separator externally, whereas in the Vessel Internal Electrostatic Coalescer (VIEC) technology method, the VIEC is built inside the treater vessel, downstream of the inlet separator with advanced internals for implementing electrocoalescence of water particles and hence enhancing liquids separation. The CEC and VIEC technologies used in the Water Knockout Facility project has the ability to resolve the increasing water cut in the S&EK area and able to enhance the liquid-liquid separation in the WKO facility separation equipment. In addition, the WKO facility is minimizing the load on the existing Gathering Center’s separation equipment, by tackling the high water-cut wells, upstream of each GC. The required performances at the outlet of the WKO facility are Oil in Water 100ppmv, Water in Oil 15% volume, liquid carryover in gas 0.1 US gal/MMSCFD, for the water cut ranging from 37.5 to 75% volume. The WKO facility project is used to sustain, support and maintain Greater Burgan production at 1.7 Million Barrels of Oil Per Day (MMBOPD), by handling the increasing water production rate.

Keywords: emulsion, increasing water-cut, production, separation equipment

Procedia PDF Downloads 207
2084 Optimization of a Method of Total RNA Extraction from Mentha piperita

Authors: Soheila Afkar

Abstract:

Mentha piperita is a medicinal plant that contains a large amount of secondary metabolite that has adverse effect on RNA extraction. Since high quality of RNA is the first step to real time-PCR, in this study optimization of total RNA isolation from leaf tissues of Mentha piperita was evaluated. From this point of view, we researched two different total RNA extraction methods on leaves of Mentha piperita to find the best one that contributes the high quality. The methods tested are RNX-plus, modified RNX-plus (1-5 numbers). RNA quality was analyzed by agarose gel 1.5%. The RNA integrity was also assessed by visualization of ribosomal RNA bands on 1.5% agarose gels. In the modified RNX-plus method (number 2), the integrity of 28S and 18S rRNA was highly satisfactory when analyzed in agarose denaturing gel, so this method is suitable for RNA isolation from Mentha piperita.

Keywords: Mentha piperita, polyphenol, polysaccharide, RNA extraction

Procedia PDF Downloads 162
2083 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 494
2082 National Defense and Armed Forces Development in the Member States of the Visegrad Group

Authors: E. Hronyecz

Abstract:

Guaranteeing the independence of the V4 Member States, the protection of their national values and their citizens, and the security of the Central and Eastern European region requires the development of military capabilities in terms of the capabilities of nations. As a result, European countries have begun developing capabilities and forces, within which nations are seeking to strengthen the capabilities of their armies and make their interoperability more effective. One aspect of this is the upgrading of military equipment, personnel equipment, and other human resources. Based on the author's preliminary researches - analyzing the scientific literature, the relevant statistical data and conducting of professional consultations with the experts of the research field – it can clearly claimed for all four states of Visegrad Group that a change of direction in the field of defense has been noticeable since the second half of the last decade. Collective defense came to the forefront again; the military training, professionalism, and radical modernization of technical equipment becoming crucial.

Keywords: armed forces, cooperation, development, Visegrad Group

Procedia PDF Downloads 105
2081 The Implementation of the Human Right of Self-Determination: the Example of Nagorno-Karabakh Republic

Authors: S. Vlasyan

Abstract:

The article deals with the implementation of the right to self-determination of peoples on the example of Nagorno-Karabakh Republic. The problem of correlation of two fundamental principles of international law i. e. territorial integrity and the right to self-determination of peoples is considered to be one of the vital issues in the field of international law for several decades. So, in this article, the author analyzes the decision of the Supreme Court of Canada regarding specific issues of secession of Quebec from Canada, as well as the decision of the International Court of Justice in the case concerning East Timor (Portugal v. Australia), and in the case of Western Sahara. The author formulates legal conditions of Nagorno-Karabakh secession.

Keywords: right of self-determination, territorial integrity, the principles of International Law, Nagorno-Karabakh Republic

Procedia PDF Downloads 379
2080 Exceptional Cost and Time Optimization with Successful Leak Repair and Restoration of Oil Production: West Kuwait Case Study

Authors: Nasser Al-Azmi, Al-Sabea Salem, Abu-Eida Abdullah, Milan Patra, Mohamed Elyas, Daniel Freile, Larisa Tagarieva

Abstract:

Well intervention was done along with Production Logging Tools (PLT) to detect sources of water, and to check well integrity for two West Kuwait oil wells started to produce 100 % water. For the first well, to detect the source of water, PLT was performed to check the perforations, no production observed from the bottom two perforation intervals, and an intake of water was observed from the top most perforation. Then a decision was taken to extend the PLT survey from tag depth to the Y-tool. For the second well, the aim was to detect the source of water and if there was a leak in the 7’’liner in front of the upper zones. Data could not be recorded in flowing conditions due to the casing deformation at almost 8300 ft. For the first well from the interpretation of PLT and well integrity data, there was a hole in the 9 5/8'' casing from 8468 ft to 8494 ft producing almost the majority of water, which is 2478 bbl/d. The upper perforation from 10812 ft to 10854 ft was taking 534 stb/d. For the second well, there was a hole in the 7’’liner from 8303 ft MD to 8324 ft MD producing 8334.0 stb/d of water with an intake zone from10322.9-10380.8 ft MD taking the whole fluid. To restore the oil production, W/O rig was mobilized to prevent dump flooding, and during the W/O, the leaking interval was confirmed for both wells. The leakage was cement squeezed and tested at 900-psi positive pressure and 500-psi drawdown pressure. The cement squeeze job was successful. After W/O, the wells kept producing for cleaning, and eventually, the WC reduced to 0%. Regular PLT and well integrity logs are required to study well performance, and well integrity issues, proper cement behind casing is essential to well longevity and well integrity, and the presence of the Y-tool is essential as monitoring of well parameters and ESP to facilitate well intervention tasks. Cost and time optimization in oil and gas and especially during rig operations is crucial. PLT data quality and the accuracy of the interpretations contributed a lot to identify the leakage interval accurately and, in turn, saved a lot of time and reduced the repair cost with almost 35 to 45 %. The added value here was more related to the cost reduction and effective and quick proper decision making based on the economic environment.

Keywords: leak, water shut-off, cement, water leak

Procedia PDF Downloads 94
2079 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models

Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik

Abstract:

The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.

Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron

Procedia PDF Downloads 154
2078 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 184
2077 Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality

Authors: Aftab Ali

Abstract:

Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen.

Keywords: cryopreservation, computer assisted sperm, flow cytometry, luminometry

Procedia PDF Downloads 124
2076 Energy Interaction among HVAC and Supermarket Environment

Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.

Keywords: energy interaction, HVAC, R-value, supermarket buildings

Procedia PDF Downloads 401