Search results for: enzymatic polymerization
576 Clinical Effectiveness of Bulk-fill Resin Composite: A Review
Authors: Taraneh Estedlal
Abstract:
The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties.PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing incidence of fractures, color stability, marginal adaptation, pain and discomfort, recurrent caries, occlusion, pulpal reaction, and proper proximal contacts of restorations made with conventional and bulk resins. The failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites. The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties. PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing one of the pearlier mentioned properties between bulk-fill and control composites. Despite differences in physical and in-vitro properties, failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites.Keywords: polymerization shrinkage, color stability, marginal adaptation, recurrent caries, occlusion, pulpal reaction
Procedia PDF Downloads 145575 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach
Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi
Abstract:
This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat
Procedia PDF Downloads 501574 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production
Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser
Abstract:
The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production
Procedia PDF Downloads 530573 New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin
Authors: Anna Trusek-Holownia, Andrzej Noworyta
Abstract:
Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed.Keywords: peptide bond hydrolysis, kinetics, enzyme specificity, biologically active peptides
Procedia PDF Downloads 437572 The Effect of Enzymatic Keratin Hydrolysate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition
Authors: Y. H. Tshela Ntumba, A. Przepiórkowska, M. Prochoń
Abstract:
Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching. The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.Keywords: agricultural mat, biodecomposition, biodegradation, carboxylated butadiene-styrene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate
Procedia PDF Downloads 416571 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential
Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh
Abstract:
Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties
Procedia PDF Downloads 353570 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases
Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher
Abstract:
Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases
Procedia PDF Downloads 242569 Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree
Authors: M. A. Siti Faridah, K. Muhammad, H. M. Ghazali, Y. A. Yusof
Abstract:
This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees.Keywords: amaranth, antioxidant, chlorophyll derivative, enzymatic liquefaction
Procedia PDF Downloads 146568 Beneficiation of Pulp and Paper Mill Sludge for the Generation of Single Cell Protein for Fish Farming
Authors: Lucretia Ramnath
Abstract:
Fishmeal is extensively used for fish farming but is an expensive fish feed ingredient. A cheaper alternate to fishmeal is single cell protein (SCP) which can be cultivated on fermentable sugars recovered from organic waste streams such as pulp and paper mill sludge (PPMS). PPMS has a high cellulose content, thus is suitable for glucose recovery through enzymatic hydrolysis but is hampered by lignin and ash. To render PPMS amenable for enzymatic hydrolysis, the PPMS waspre-treated to produce a glucose-rich hydrolysate which served as a feed stock for the production of fungal SCP. The PPMS used in this study had the following composition: 72.77% carbohydrates, 8.6% lignin, and 18.63% ash. The pre-treatments had no significant effect on lignin composition but had a substantial effect on carbohydrate and ash content. Enzymatic hydrolysis of screened PPMS was previously optimized through response surface methodology (RSM) and 2-factorial design. The optimized protocol resulted in a hydrolysate containing 46.1 g/L of glucose, of which 86% was recovered after downstream processing by passing through a 100-mesh sieve (38 µm pore size). Vogel’s medium supplemented with 10 g/L hydrolysate successfully supported the growth of Fusarium venenatum, conducted using standard growth conditions; pH 6, 200 rpm, 2.88 g/L ammonium phosphate, 25°C. A maximum F. venenatum biomass of 45 g/L was produced with a yield coefficient of 4.67. Pulp and paper mill sludge hydrolysate contained approximately five times more glucose than what was needed for SCP production and served as a suitable carbon source. We have shown that PPMS can be successfully beneficiated for SCP production.Keywords: pulp and paper waste, fungi, single cell protein, hydrolysate
Procedia PDF Downloads 207567 Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers
Authors: Y. Jeon, A. Bissessur, J. Lin, P. Ndungu
Abstract:
Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique.Keywords: alpha cellulose, bio-bleaching, degree of polymerization, Kraft-cellulose insulating paper, transformer, viscosity
Procedia PDF Downloads 270566 Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves
Authors: Preshanthan Moodley, E. B. Gueguim Kana
Abstract:
This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.Keywords: lignocellulosic bioethanol, microwave pretreatment, sugarcane leaves, kinetics
Procedia PDF Downloads 122565 Bio-Furan Based Poly (β-Thioether Ester) Synthesized via Thiol-Michael Addition Polymerization with Tunable Structure and Properties
Authors: Daihui Zhang, Marie J. Dumont
Abstract:
A derivative of 5-hydroxymethylfurfural (HMF) was synthesized for the thiol-Michael addition reaction. The efficiency of the catalysts (base and nucleophiles) and side reactions during the thiol-Michael addition were investigated. Dimethylphenylphosphine efficiently initiated the thiol-Michael addition polymerization for synthesizing a series of bio-based furan polymers with different structure and properties. The benzene rings or hydroxyl groups present in the polymer chains increased the glass transition temperature (Tg) of poly (β-thioether ester). Additionally, copolymers with various compositions were obtained via adding different ratio of 1,6-hexanedithiols to 1,4-benzenedithiols. 1H NMR analysis revealed that experimental ratios of two dithiols monomers matched well with theoretical ratios. The occurrence of a reversible Diels-Alder reaction between furan rings and maleimide groups allowed poly (β-thioether ester) to be dynamically crosslinked. These polymers offer the potentials to produce materials from biomass that have both practical mechanical properties and reprocessing ability.Keywords: copolymers, Diels-Alder reaction, hydroxymethylfurfural, Thiol-Michael addition
Procedia PDF Downloads 330564 Development and in vitro Evaluation of Polymer-Drug Conjugates Containing Potentiating Agents for Combination Therapy
Authors: Blessing A. Aderibigbe
Abstract:
Combination therapy is a treatment approach that is used to prevent the emergence of drug resistance. This approach is used for the treatment of many chronic and infectious diseases. Potentiating agents are currently explored in combination therapy, resulting in excellent therapeutic outcomes. Breast cancer and malaria are two chronic conditions responsible globally for high death rates. In this research, a class of polymer-drug conjugates containing potentiating agents with either antimalarial or anticancer drugs were prepared by Michael Addition Polymerization reaction and ring-opening polymerization reaction. Conjugation of potentiating agents with bioactive compounds into the polymers resulted in conjugates with good water solubility, highly selective and non-toxic. In vitro cytotoxicity and in vitro antiplasmodial evaluation on the conjugates revealed that the conjugates were more effective when compared to the free drugs. The drug release studies further showed that the release profile of the drugs from the conjugates was sustained. The findings revealed the potential of polymer-drug conjugates to overcome drug toxicity and drug resistance, which is common with the currently used antimalarial and anticancer drugs.Keywords: anticancer, antimalarials, combination therapy, polymer-drug conjugates
Procedia PDF Downloads 133563 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles
Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos
Abstract:
D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid
Procedia PDF Downloads 340562 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis
Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar
Abstract:
Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast
Procedia PDF Downloads 482561 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain
Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno
Abstract:
Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.Keywords: degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components
Procedia PDF Downloads 250560 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology
Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin
Abstract:
Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.Keywords: ferulic acid, enzymatic synthesis, esters, RSM
Procedia PDF Downloads 332559 Chemical Composition and Biological Properties of Algerian Honeys
Authors: Ouchemoukh Salim, Amessis-Ouchemoukh Nadia, Guenaoui Nawel, Moumeni Lynda, Zaidi Hicham, Otmani Amar, Sadou Dyhia
Abstract:
Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values.Keywords: honey, physico-chemical parameters, bioactive compounds, biological properties
Procedia PDF Downloads 55558 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress
Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li
Abstract:
Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress
Procedia PDF Downloads 175557 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System
Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal
Abstract:
The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.Keywords: cellulase, hydrolysis, lignocellulose, pretreatment
Procedia PDF Downloads 365556 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking
Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya
Abstract:
Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate
Procedia PDF Downloads 323555 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation
Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager
Abstract:
The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization
Procedia PDF Downloads 100554 In-House Enzyme Blends from Polyporus ciliatus CBS 366.74 for Enzymatic Saccharification of Pretreated Corn Stover
Authors: Joseph A. Bentil, Anders Thygesen, Lene Langea, Moses Mensah, Anne Meyer
Abstract:
The study investigated the saccharification potential of in-house enzymes produced from a white-rot basidiomycete strain, Polyporus ciliatus CBS 366.74. The in-house enzymes were produced by growing the fungus on mono and composite substrates of cocoa pod husk (CPH) and green seaweed (GS) (Ulva lactuca sp.) with and without the addition of 25mM ammonium nitrate at 4%w/v substrate concentration in submerged condition for 144 hours. The crude enzyme extracts preparations (CEE 1-5 and CEE 1-5+AN) obtained from the fungal cultivation process were sterile-filtered and used as enzyme sources for enzymatic hydrolysis of hydrothermally pretreated corn stover using a commercial cocktail enzyme, Cellic Ctec3, as benchmark. The hydrolysis was conducted at 50ᵒC with 50mM sodium acetate buffer, pH 5 based on enzyme dosages of 5 and 10 CMCase Units/g biomass at 1%w/v dry weight substrate concentration at time points of 6, 24, and 72 hours. The enzyme activity profile of the in-house enzymes varied among the growth substrates with the composite substrates (50-75% GS and AN inclusion), yielding better enzyme activities, especially endoglucanases (0.4-0.5U/mL), β-glucosidases (0.1-0.2 U/mL), and xylanases (3-10 U/mL). However, nitrogen supplementation had no significant effect on enzyme activities of crude extracts from 100% GS substituted substrates. From the enzymatic hydrolysis, it was observed that the in-house enzymes were capable of hydrolysing the pretreated corn stover at varying degrees; however, the saccharification yield was less than 10%. Consequently, theoretical glucose yield was ten times lower than Cellic Ctec3 at both dosage levels. There was no linear correlation between glucose yield and enzyme dosage for the in-house enzymes, unlike the benchmark enzyme. It is therefore recommended that the in-house enzymes are used to complement the dosage of commercial enzymes to reduce the cost of biomass saccharification.Keywords: enzyme production, hydrolysis yield, feedstock, enzyme blend, Polyporus ciliatus
Procedia PDF Downloads 266553 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes
Authors: Salwa Karboune, Amanda Waglay
Abstract:
Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides
Procedia PDF Downloads 379552 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite
Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher
Abstract:
In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection
Procedia PDF Downloads 164551 Utilization Reactive Dilutes to Improve the Properties of Epoxy Resin as Anticorrosion Coating
Authors: El-Sayed Negim, Ainakulova D. T., Puteri S. M., Khaldun M. Azzam, Bekbayeva L. K., Arpit Goyal, Ganjian E.
Abstract:
Anticorrosion coatings protect metal surfaces from environmental factors including moisture, oxygen, and gases that caused corrosion to the metal. Various types of anticorrosion coatings are available, with different properties and application methods. Many researchers have been developing methods to prevent corrosion, and epoxy polymers are one of the wide methods due to their excellent adhesion, chemical resistance, and durability. In this study, synthesis reactive dilute based on glycidyl methacrylate (GMA) with each of 2-ethylhexyl acrylate (2-EHA) and butyl acrylate (BuA) to improve the performance of epoxy resin and anticorrosion coating. The copolymers were synthesized with composition ratio (5/5) by bulk polymerization technique using benzoyl peroxide as a catalyst and temperature at 85 oC for 2 hours and at 90 oC for 30 minutes to complete the polymerization process. The obtained copolymers were characterized by FTIR, viscosity and thixotropic index. The effect of copolymers as reactive dilute on the physical and mechanical properties of epoxy resin was investigated. Metal plates coated by the modified epoxy resins with different contents of copolymers were tested using alkali and salt test methods, and the copolymer based on GMA and BUA showed the best protection efficiency due to the barrier effect of the polymer layer.Keywords: epoxy, coating, dilute, corrosion, reactive
Procedia PDF Downloads 52550 Assessment of the Effect of Ethanolic Leaf Extract of Annona squamosa L. on Den Induced Hepatocellular Carcinoma in Experimental Animals
Authors: Vanitha Varadharaj, Vijalakshmi Krishnamurthy
Abstract:
Annona squamosa Linn, commonly known as Sugar apple, belonging to the family Annonaceae, is said to show varied medicinal effects, including insecticide, antiovulatory and abortifacient. The alkaloid and flavonoids present in Annona squamosa leaf has proved to have antioxidant activity. The present work has been planned to investigate the effect of ethanolic leaf extract of Annona squamosa leaf on Den Induced wistar albino rats. The study was carried out to analyze the biochemical Parmeters like Total Proteins, Bilirubin, Enzymatic and Non –Enzymatic enzymes, Marker enzymes and Tumor markers in serum and also the histopathological studies in liver is carried out in control and DEN induced rats. Supplementation of ELAS (Ethanolic Leaf Extract Of Annona squamosa) reduced the liver weight and also reduced the tumour incidence. Chemoprevention group showed near normal values of bilirubin when compared with the control rats. Total protein was decreased in the cancer bearing group and on treatment with the extract the levels of protein were restored. Both in pre and post treatment group, the activities of enzymatic antioxidants such as superoxide dismutase, catalase, and Glutathione peroxidase were increased but in pre treated animals it was more effective than post treated animals. The non- enzymatic antioxidants such as vitamin C and vitamin E were brought back to normal level significantly in post and pre treated animals. Activities of marker enzymes such as SGOT, SGPT, ALP, γ GT were significantly elevated in the serum of cancer animals and the values returned to normal after treatment with the extract suggesting the hepato protective effect of the extract. Lipid peroxide was found to be elevated in the cancer induced group. This condition was brought back to the normal in the pre and post treated animals with ELAS. Histological examination also confirmed the anti- carcinogenic potential of ELAS, Cancer induced groups had a triple fold increase in their AFP values when compared to other groups. DEN treatment increased the level of AFP expression while ELAS partially counteracted the effect of it. So the scientific validation obtained from this study may pave way to many budding scientists to find new drugs from Annona squamosa for various ailments.Keywords: annona squamosa, biochemical parmeters, cancer, leaf extract
Procedia PDF Downloads 331549 Preparation, Structure, and Properties of Hydroxyl Containing Acrylate Monomer Grafted Silk Fabrics by HRP-Catalyzed ATRP Method
Authors: Tieling Xing, Jinqiu Yang, Guoqiang Chen
Abstract:
It is environmentally friendly to use horseradish peroxidase (HRP) instead of the traditional transition metal catalyst for the catalyst of atom transfer radical polymerization (ATRP). Silk fabrics were successfully grafted with hydroxyl-containing acrylate monomer to improve its crease resistance by HRP-catalyzed ATRP method. Taking grafting yield as the evaluation index, single factor tests revealed that the optimum grafting reaction condition was as follow: monomer mass fraction 120-210%(o.w.f), HRP concentration 360-480U/mL, molar ratio of HRP to NaAsc 1:150, reaction temperature 50-60℃, reaction time 24h. Raman spectra showed hydroxyl-containing acrylate monomer were successfully grafted on silk fabrics. SEM figures indicated the surface of grafted silk became rougher, and graft copolymer was distributed evenly on the surface of silk fiber. The crease-resistant recovery property of grafted silk fabric was greatly improved, especially in wet crease recovery angle. The result showed hydroxyl-containing acrylate monomer can be successfully grafted onto silk fabric based on HRP-catalyzed ATRP method.Keywords: atom transfer radical polymerization, catalysis, horseradish peroxidase, hydroxyl-containing acrylate monomer
Procedia PDF Downloads 151548 Treatment with Triton-X 100: An Enhancement Approach for Cardboard Bioprocessing
Authors: Ahlam Said Al Azkawi, Nallusamy Sivakumar, Saif Nasser Al Bahri
Abstract:
Diverse approaches and pathways are under development with the determination to develop cellulosic biofuels and other bio-products eventually at commercial scale in “bio-refineries”; however, the key challenge is mainly the high level of complexity in processing the feedstock which is complicated and energy consuming. To overcome the complications in utilizing the naturally occurring lignocellulose biomass, using waste paper as a feedstock for bio-production may solve the problem. Besides being abundant and cheap, bioprocessing of waste paper has evolved in response to the public concern from rising landfill cost from shrinking landfill capacity. Cardboard (CB) is one of the major components of municipal solid waste and one of the most important items to recycle. Although 50-70% of cardboard constitute is known to be cellulose and hemicellulose, the presence of lignin around them cause hydrophobic cross-link which physically obstructs the hydrolysis by rendering it resistant to enzymatic cleavage. Therefore, pretreatment is required to disrupt this resistance and to enhance the exposure of the targeted carbohydrates to the hydrolytic enzymes. Several pretreatment approaches have been explored, and the best ones would be those can influence cellulose conversion rates and hydrolytic enzyme performance with minimal or less cost and downstream processes. One of the promising strategies in this field is the application of surfactants, especially non-ionic surfactants. In this study, triton-X 100 was used as surfactants to treat cardboard prior enzymatic hydrolysis and compare it with acid treatment using 0.1% H2SO4. The effect of the surfactant enhancement was evaluated through its effect on hydrolysis rate in respect to time in addition to evaluating the structural changes and modification by scanning electron microscope (SEM) and X-ray diffraction (XRD) and through compositional analysis. Further work was performed to produce ethanol from CB treated with triton-X 100 via separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The hydrolysis studies have demonstrated enhancement in saccharification by 35%. After 72 h of hydrolysis, a saccharification rate of 98% was achieved from CB enhanced with triton-X 100, while only 89 of saccharification achieved from acid pre-treated CB. At 120 h, the saccharification % exceeded 100 as reducing sugars continued to increase with time. This enhancement was not supported by any significant changes in the cardboard content as the cellulose, hemicellulose and lignin content remained same after treatment, but obvious structural changes were observed through SEM images. The cellulose fibers were clearly exposed with very less debris and deposits compared to cardboard without triton-X 100. The XRD pattern has also revealed the ability of the surfactant in removing calcium carbonate, a filler found in waste paper known to have negative effect on enzymatic hydrolysis. The cellulose crystallinity without surfactant was 73.18% and reduced to 66.68% rendering it more amorphous and susceptible to enzymatic attack. Triton-X 100 has proved to effectively enhance CB hydrolysis and eventually had positive effect on the ethanol yield via SSF. Treating cardboard with only triton-X 100 was a sufficient treatment to enhance the enzymatic hydrolysis and ethanol production.Keywords: cardboard, enhancement, ethanol, hydrolysis, treatment, Triton-X 100
Procedia PDF Downloads 152547 Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils
Authors: Hak-Ryul Kim, Hyung-Geun Lee, Qi Long, Ching Hou
Abstract:
Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications.Keywords: biocatalysis, antimicrobial agent, multidrug-resistant bacteria, vegetable oil
Procedia PDF Downloads 202