Search results for: convergence results
37365 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy
Authors: Erick Pruchnicki, Nikhil Padhye
Abstract:
Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials
Procedia PDF Downloads 11237364 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets
Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei
Abstract:
The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation.Keywords: convex feasibility problem, convergence analysis, inpainting, parallel projection methods
Procedia PDF Downloads 17437363 Study on a Family of Optimal Fourth-Order Multiple-Root Solver
Authors: Young Hee Geum
Abstract:
In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence.Keywords: basin of attraction, conjugacy, fourth-order, multiple-root finder
Procedia PDF Downloads 29337362 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters
Authors: Sahar Mobeen, Anam Rafique, Irum Baig
Abstract:
Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.Keywords: LMS, LLMS, NLMS, AFA, ANLLMS
Procedia PDF Downloads 56637361 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distributionKeywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution
Procedia PDF Downloads 25537360 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: asymptotically quasi-nonexpansive nonself-mapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space
Procedia PDF Downloads 26037359 Consequences to Financial Reporting by Implementing Sri Lanka Financial Reporting Standard 13 on Measuring the Fair Value of Financial Instruments: Evidence from Three Sri Lankan Organizations
Authors: Nayoma Ranawaka
Abstract:
The demand for the high quality internationally comparable financial information has been increased than ever with the expansion of economic activities beyond its national boundaries. Thus, the necessity of converging accounting practices across the world is now continuously discussed with greater emphasis. The global convergence to International Financial Reporting Standards has been one of the main objectives of the International Accounting Standards Setting Board (IASB) since its establishment in 2001. Accordingly, Sri Lanka has adopted IFRSs in 2012. Among the other standards as a newly introduced standard by the IASB, IFRS 13 plays a pivotal role as it deals with the Fair Value Accounting (FVA). Therefore, it is valuable to obtain knowledge about the consequences of implementing IFRS 13 in Sri Lanka and compare results across nations. According to the IFRS Jurisdictional provision of Sri Lanka, Institute of Chartered Accountants of Sri Lanka has taken official steps to adopt IFRS 13 by introducing SLFRS 13 with de jure convergence. Then this study was identified the de facto convergence of the SLFRS 13 in measuring the Fair Value of Financial Instruments in the Sri Lankan context. Accordingly, the objective of this study is to explore the consequences to financial reporting by implementing SLFRS 13 on measuring the financial instruments. In order to achieve the objective of the study expert interview and in-depth interviews with the interviewees from the selected three case studies and their independent auditor were carried out using customized three different interview guides. These three cases were selected from three different industries; Banking, Manufacturing and Finance. NVivo version 10 was used to analyze the data collected through in-depth interviews. Then the content analysis was carried out and conclusions were derived based on the findings. Contribution to the knowledge by this study can be identified in different aspects. Findings of this study facilitate accounting practitioners to get an overall picture of application of fair value standard in measuring the financial instruments and to identify the challenges and barriers to the adoption process. Further, assist auditors in carrying out their audit procedures to check the level of compliance to the fair value standard in measuring the financial instruments. Moreover, this would enable foreign investors in assessing the reliability of the financial statements of their target investments as a result of SLFRS 13 in measuring the FVs of the FIs. The findings of the study could be used to open new avenues of thinking for policy formulators to provide the necessary infrastructure to eliminate disparities exists among different regulatory bodies to facilitate full convergence and thereby growth of the economy. Further, this provides insights to the dynamics of FVA implementation that are also relevant for other developing countries.Keywords: convergence, fair value, financial instruments, IFRS 13
Procedia PDF Downloads 12637358 Application of Heuristic Integration Ant Colony Optimization in Path Planning
Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang
Abstract:
This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.Keywords: ant colony optimization, heuristic integration, path planning, probability formula
Procedia PDF Downloads 25037357 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 31637356 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results
Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif
Abstract:
This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence
Procedia PDF Downloads 49537355 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems
Authors: T. A. Biala
Abstract:
This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence
Procedia PDF Downloads 37737354 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”
Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani
Abstract:
The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density
Procedia PDF Downloads 12437353 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction
Authors: Bastien Batardière, Joon Kwon
Abstract:
For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.Keywords: convex optimization, variance reduction, adaptive algorithms, loopless
Procedia PDF Downloads 7037352 The Fluid Limit of the Critical Processor Sharing Tandem Queue
Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini
Abstract:
A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue
Procedia PDF Downloads 32337351 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows
Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang
Abstract:
We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis
Procedia PDF Downloads 4637350 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation
Authors: Y. A. Yahaya, Ahmad Tijjani Asabe
Abstract:
This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis
Procedia PDF Downloads 62637349 Some Efficient Higher Order Iterative Schemes for Solving Nonlinear Systems
Authors: Sandeep Singh
Abstract:
In this article, two classes of iterative schemes are proposed for approximating solutions of nonlinear systems of equations whose orders of convergence are six and eight respectively. Sixth order scheme requires the evaluation of two vector-functions, two first Fr'echet derivatives and three matrices inversion per iteration. This three-step sixth-order method is further extended to eighth-order method which requires one more step and the evaluation of one extra vector-function. Moreover, computational efficiency is compared with some other recently published methods in which we found, our methods are more efficient than existing numerical methods for higher and medium size nonlinear system of equations. Numerical tests are performed to validate the proposed schemes.Keywords: Nonlinear systems, Computational complexity, order of convergence, Jarratt-type scheme
Procedia PDF Downloads 13637348 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.Keywords: spectral density, stable processes, aliasing, non parametric
Procedia PDF Downloads 13037347 The Application of Creative Economy in National R&D Programs of Health Technology (HT) Area in Korea
Authors: Hong Bum Kim
Abstract:
Health technology (HT) area have high growth potential because of global trends such as ageing and economical development. For its high employment effect and capability for creating new business, HT is being considered as one of the major next-generation growth power. Particularly, convergence technologies which are emerged by fusion of HT and other technological area is emphasized for new industry creation in Korea, as a part of Creative Economy. In this study, current status of HT area in Korea is analyzed. The aspect of transition in emphasized technological area of HT-related national R&D enterprise is statistically reviewed. Current level of HT-related technologies such as BT, IT and NT is investigated in this context. Existing research system for HT-convergence technology development such as establishment of research center is also analyzed. Finally, proposed research support system such as system of legislation for developing HT area as one of the main component of Creative Economy in Korea will be analyzed. Analysis of technology trend and policy will help to draw a new direction in progression of R&D enterprise in HT area. Improvement of policy such as legal system reorganization and measure of social agreement for burden of expense could be deduced based on these results.Keywords: HT, creative economy, policy, national R&D programs
Procedia PDF Downloads 38737346 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach
Authors: Sifeddine Abderrahmani, Sonia Bouafia
Abstract:
The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element
Procedia PDF Downloads 9937345 The Role of Metaheuristic Approaches in Engineering Problems
Authors: Ferzat Anka
Abstract:
Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems
Procedia PDF Downloads 7737344 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization
Authors: Belloufi Mohammed, Sellami Badreddine
Abstract:
Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons
Procedia PDF Downloads 40437343 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm
Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang
Abstract:
In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm
Procedia PDF Downloads 15137342 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event
Authors: Nadine Ayasha
Abstract:
Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline
Procedia PDF Downloads 15937341 Nonparametric Quantile Regression for Multivariate Spatial Data
Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang
Abstract:
Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.Keywords: conditional quantile, kernel, nonparametric, stationary
Procedia PDF Downloads 15437340 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 16437339 Approximation by Generalized Lupaş-Durrmeyer Operators with Two Parameter α and β
Authors: Preeti Sharma
Abstract:
This paper deals with the Stancu type generalization of Lupaş-Durrmeyer operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, 1]. Also, Voronovskaja type theorem is studied.Keywords: Lupas-Durrmeyer operators, polya distribution, weighted approximation, rate of convergence, modulus of continuity
Procedia PDF Downloads 34637338 Basis Theorem of Equivalence of Explicit-Type Iterations for the Class of Multivalued Phi-Quasi-Contrative Maps in Modular Function Spaces
Authors: Hudson Akewe
Abstract:
We prove that the convergence of explicit Mann, explicit Ishikawa, explicit Noor, explicit SP, explicit multistep and explicit multistep-SP fixed point iterative procedures are equivalent for the classes of multi-valued phi-contraction, phi-Zamfirescu and phi-quasi-contractive mappings in the framework of modular function spaces. Our results complement equivalence results on normed and metric spaces in the literature as they elegantly cut out the triangle inequality.Keywords: multistep iterative procedures, multivalued mappings, equivalence results, fixed point
Procedia PDF Downloads 13237337 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits
Procedia PDF Downloads 13037336 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.Keywords: information entropy, structural optimization, truss structure, whale algorithm
Procedia PDF Downloads 249