Search results for: continuum dislocation
256 Third Language Perception of English Initial Plosives by Mandarin-Japanese Bilinguals
Authors: Rika Aoki
Abstract:
The aim of this paper is to investigate whether being bilinguals facilitates or impedes the perception of a third language. The present study conducted a perception experiment in which Mandarin-Japanese bilinguals categorized a Voice-Onset-Time (VOT) continuum into English /b/ or /p/. The results show that early bilinguals were influenced by both Mandarin and Japanese, while late bilinguals behaved in a similar manner to Mandarin monolinguals Thus, it can be concluded that in the present study having two languages did not help bilinguals to perceive L3 stop contrast native-likely.Keywords: bilinguals, perception, third language acquisition, voice-onset-time
Procedia PDF Downloads 292255 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 314254 Theoretical Research for Influence of Irradiation on Transient Creep of Metals
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Via formalism of the Complex systems and in the framework of the climb - glide model a theoretical approach to describe the influence of irradiation on transient creep of metals. We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion that consists in climb and glide. It is shown that there are qualitatively different regimes of a creep as a result of irradiation. Simulation and analysis of this phenomenon are performed. The time dependence of creep rate of metal under an irradiation is theoretically obtained. The conditions of zero minimums of the creep-rate existence as well as the times of their appearance are determined. The changing of the position of creep-rate dips in the conditions of the temperature exposure change is investigated. The obtained results are compared with the experimentally observed dependence of the creep rate on time.Keywords: creep, climb and glide of dislocations, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 201253 Monitoring and Analysis of Bridge Crossing Ground Fissures
Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou
Abstract:
Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.Keywords: bridge monitoring, ground fissures, typical disease, structural displacement
Procedia PDF Downloads 223252 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 80251 Plastic Deformation of Mg-Gd Solid Solutions between 4K and 298K
Authors: Anna Kula, Raja K. Mishra, Marek Niewczas
Abstract:
Deformation behavior of Mg-Gd solid solutions have been studied by a combination of measurements of mechanical response, texture and dislocation substructure. Increase in Gd content strongly influences the work-hardening behavior and flow characteristics in tension and compression. Adiabatic instabilities have been observed in all alloys at 4K under both tension and compression. The frequency and the amplitude of adiabatic stress oscillations increase with Gd content. Profuse mechanical twinning has been observed under compression, resulting in a texture dominated by basal component parallel to the compression axis. Under tension, twining is less active and the texture evolution is affected mostly by slip. Increasing Gd concentration leads to the reduction of the tension and compression asymmetry due to weakening of the texture and stabilizing more homogenous twinning and slip, involving basal and non-basal slip systems.Keywords: Mg-Gd alloys, mechanical properties, work hardening, twinning
Procedia PDF Downloads 539250 Improving Academic Literacy in the Secondary History Classroom
Authors: Wilhelmina van den Berg
Abstract:
Through intentionally developing the Register Continuum and the Functional Model of Language in the secondary history classroom, teachers can effectively build a teaching and learning cycle geared towards literacy improvement and EAL differentiation. Developing an understanding of and engaging students in the field, tenor, and tone of written and spoken language, allows students to build the foundation for greater academic achievement due to integrated literacy skills in the history classroom. Building a variety of scaffolds during lessons within these models means students can improve their academic language and communication skills.Keywords: academic language, EAL, functional model of language, international baccalaureate, literacy skills
Procedia PDF Downloads 62249 Finite Element Molecular Modeling: A Structural Method for Large Deformations
Authors: A. Rezaei, M. Huisman, W. Van Paepegem
Abstract:
Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.Keywords: finite element, large deformation, molecular mechanics, structural method
Procedia PDF Downloads 152248 Factors Contributing to Sports Injuries among Senior High Schools in Ghana
Authors: Mawuli M. Sedegah, Emmanuel O. Sarpong, Ernest Y. Acheampong
Abstract:
Sports injuries among student-athletes in high schools have become prevalent in most developing countries. The study explores the risk factors influencing sports injuries and identify those sustained among high schools’ competitions in the Akuapem Municipality. Drawing on literature from sports injuries, 610 student-athletes were used to understand how they sustained various injuries during schools’ sports and games. Using a cross-sectional survey, the study reveals how wounds, knee injury, muscle cramps, and thigh injury are common injuries in the municipality. The physiological factor was rampant, resulting from the number of games played by student-athletes, which significantly influenced sprain, strain, dislocation, and nose bleeding injuries among them. Results recorded a low correlation accounting for 9% occurrence of sports injuries in the Akuapem Municipality. Further study can be done in the other districts to have a general approach to remedy some of these sports injuries.Keywords: common injuries, physiological factors, sports injuries, student-athletes
Procedia PDF Downloads 171247 Use of EPR in Experimental Mechanics
Authors: M. Sikoń, E. Bidzińska
Abstract:
An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses.Keywords: Cosserat medium, EPR spectroscopy, optical active electrons, optical activity
Procedia PDF Downloads 380246 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 99245 Mobile Health Approaches in the Management of Breast Cancer: A Qualitative Content Analysis
Authors: Hyekyung Woo, Gwihyun Kim
Abstract:
mHealth, which encompasses mobile health technologies and interventions, is rapidly evolving in various medical specialties, and its impact is evident in oncology. This review describes current trends in research addressing the integration of mHealth into the management of breast cancer by examining evaluations of mHealth and its contributions across the cancer care continuum. Mobile technologies are perceived as effective in prevention and as feasible for managing breast cancer, but the diagnostic accuracy of these tools remains in doubt. Not all phases of breast cancer treatment involve mHealth, and not all have been addressed by research. These drawbacks in the application of mHealth to breast cancer management call for intensified research to strengthen its role in breast cancer care.Keywords: mobile application, breast cancer, content analysis, mHealth
Procedia PDF Downloads 312244 Effectuation in Production: How Production Managers Can Apply Decision-Making Techniques of Successful Entrepreneurs
Authors: Malte Brettel, David Bendig, Michael Keller, Marius Rosenberg
Abstract:
What are the core competences necessary in order to sustain manufacturing in high-wage countries? Aspiring countries all over the world gain market share in manufacturing and rapidly close the productivity and quality gap that has until now protected some parts of the industry in Europe and the United States from dislocation. However, causal production planning and manufacturing, the basis for productivity and quality, is challenged by the ever-greater need for flexibility and customized products in an uncertain business environment. This article uses a case-study-based approach to assess how production managers in high-wage countries can apply decision-making principals from successful entrepreneurs. 'Effectuation' instead of causal decision making can be applied to handle uncertainty of mass customization, to seek the right partners in alliances and to advance towards virtual production. The findings help managers to use their resources more efficiently and contribute to bridge the gap between production research and entrepreneurship.Keywords: case studies, decision-making behavior, effectuation, production planning
Procedia PDF Downloads 348243 Assessment of Slope Stability by Continuum and Discontinuum Methods
Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid
Abstract:
The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.Keywords: comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces
Procedia PDF Downloads 533242 A Preliminary Study of Urban Resident Space Redundancy in the Context of Rapid Urbanization: Based on Urban Research of Hongkou District of Shanghai
Authors: Ziwei Chen, Yujiang Gao
Abstract:
The rapid urbanization has caused the massive physical space in Chinese cities to be in a state of duplication and dislocation through the rapid development, forming many daily spaces that cannot be standardized, typed, and identified, such as illegal construction. This phenomenon is known as urban spatial redundancy and is often excluded from mainstream architectural discussions because of its 'remaining' and 'excessive' derogatory label. In recent years, some practice architects have begun to pay attention to this phenomenon and tried to tap the value behind it. In this context, the author takes the redundancy phenomenon of resident space as the research object and explores the inspiration to the urban architectural renewal and the innovative residential area model, based on the urban survey of redundant living space in Hongkou District of Shanghai. On this basis, it shows that the changes accumulated in the long-term use of the building can be re-applied to the goals before the design, which is an important link and significance of the existence of an architecture.Keywords: rapid urbanization, living space redundancy, architectural renewal, residential area model
Procedia PDF Downloads 135241 Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble
Authors: Mahmoud Rabh
Abstract:
Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements.Keywords: garnet abrasive, heat treatment, water jet cutting, hardness abrasiveness
Procedia PDF Downloads 335240 Deformation Mechanisms of Mg-Based Composite Studied by Neutron Diffraction and Acoustic Emission
Authors: G. Farkas, K. Mathis, J. Pilch, P. Minarik
Abstract:
Deformation mechanisms in an Mg-Al-Ca alloy reinforced with short alumina fibres were studied by acoustic emission and in-situ neutron diffraction method. The fibres plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. In-situ neutron diffraction tests were measured at different temperatures from room temperature (RT) to 200°C. The measurement shows the lattice strain changes in the matrix and also in the reinforcement phase depending on macroscopic compressive deformation and stress. In case of parallel fibre plane orientation, the increment of compressive lattice strain is lower in the matrix and higher in the fibres in comparison to perpendicular fibre orientation. Furthermore, acoustic emission results indicate a larger twinning activity and more frequent fibre cracking in sample with perpendicular fibre plane orientation. Both types of mechanisms are more dominant at elevated temperatures.Keywords: neutron diffraction, acoustic emission, magnesium based composite, deformation mechanisms
Procedia PDF Downloads 162239 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method
Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya
Abstract:
The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.Keywords: ALE, coupling, FEM, fluid-structure, interaction, one-way method, two-way method
Procedia PDF Downloads 678238 A Framework for Evaluation of Enterprise Architecture Implementation Methodologies
Authors: Babak Darvish Rouhani, Mohd Naz'ri Mahrin, Fatemeh Nikpay, Maryam Khanian Najafabadi
Abstract:
Enterprise Architecture (EA) Implementation Methodologies have become an important part of EA projects. Several implementation methodologies have been proposed, as a theoretical and practical approach, to facilitate and support the development of EA within an enterprise. A significant question when facing the starting of EA implementation is deciding which methodology to utilize. In order to answer this question, a framework with several criteria is applied in this paper for the comparative analysis of existing EA implementation methodologies. Five EA implementation methodologies including: EAP, TOGAF, DODAF, Gartner, and FEA are selected in order to compare with proposed framework. The results of the comparison indicate that those methodologies have not reached a sufficient maturity as whole due to lack of consideration on requirement management, maintenance, continuum, and complexities in their process. The framework has also ability for the evaluation of any kind of EA implementation methodologies.Keywords: enterprise architecture, EAIM, evaluating EAIM, framework for evaluation, enterprise architecture implementation methodology
Procedia PDF Downloads 382237 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 30236 A Preliminary Conceptual Scale to Discretize the Distributed Manufacturing Continuum
Authors: Ijaz Ul Haq, Fiorenzo Franceschini
Abstract:
The distributed manufacturing methodology brings a new concept of decentralized manufacturing operations close to the proximity of end users. A preliminary scale, to measure distributed capacity and evaluate positioning of firms, is developed in this research. In the first part of the paper, a literature review has been performed which highlights the explorative nature of the studies conducted to present definitions and classifications due to novelty of this topic. From literature, five dimensions of distributed manufacturing development stages have been identified: localization, manufacturing technologies, customization and personalization, digitalization and democratization of design. Based on these determinants a conceptual scale is proposed to measure the status of distributed manufacturing of a generic firm. A multiple case study is then conducted in two steps to test the conceptual scale and to identify the corresponding level of distributed potential in each case study firm.Keywords: distributed manufacturing, distributed capacity, localized production, ordinal scale
Procedia PDF Downloads 163235 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K
Authors: Pavel Zabrodin
Abstract:
The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy
Procedia PDF Downloads 455234 Children of Syria: Using Drawings for Diagnosing and Treating Trauma
Authors: Fatten F. Elkomy
Abstract:
The Syrian refugees are the largest refugee population since World War II. Mostly, children, these individuals were exposed to intense traumatic events in their homeland, throughout their journey, and during settlement in foreign lands. Art is a universal language to express feelings and tough human experiences. It is also a medium for healing and promoting creativity and resilience. Literature review was conducted to examine the use of art to facilitate psychiatric interviews, diagnosis, and therapy with traumatized children. Results show a severe impact of childhood trauma on the increased risk for abuse, neglect, and psychiatric disorders. Clinicians must recognize, evaluated and provide help for these children. In conclusion, drawings are used to tell a story, reflect deep emotions, and create a meaningful self-recognition and determination. Participants will understand art therapy using the expressive therapies continuum framework to evaluate drawings and to promote healing for refugee children.Keywords: art therapy, children drawings, Syrian refugees, trauma in childhood
Procedia PDF Downloads 165233 Timely Screening for Palliative Needs in Ambulatory Oncology
Authors: Jaci Mastrandrea
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening is directly correlated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project is to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline from March 15th, 2022, to April 29th, 2022. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated and evidence-based PC referral criteria. The tool was initially implemented using paper forms and later was integrated into the Epic-Beacon EHR system. Patients were screened by registered nurses on the SLCTC treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher were considered to be a positive screen. Scores of five or higher triggered a PC referral order in the patient’s EHR for the oncologist to review and approve. All patients with a positive screen received an educational handout on the topic of PC, and the EHR was flagged for follow-up. Results: Prior to implementation of the PSCNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the first 100 patient screenings completed within the eight-week data collection period. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting the criteria were flagged in the EHR for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative care, symptom management, symptom screening, ambulatory oncology, cancer, supportive care
Procedia PDF Downloads 76232 A Comparative Study on Compliment Response between Indonesian EFL Students and English Native Speakers
Authors: Maria F. Seran
Abstract:
In second language interaction, an EFL student always carries his knowledge of targeted language and sometimes gets influenced by his first language cultures which makes him transfer his utterances from the first language to the second language. The influence of L1 cultures somehow can lead to face-threatening act when it comes to responding on speech act, for instance, compliment. A speaker praises a compliment to show gratitude, and in return, he expects for compliment respond uttered by the hearer. While Western people use more acceptance continuum on compliment response, Indonesians utter more denial continuum which can somehow put the speakers into a face-threating situation and offense. This study investigated compliment response employed by EFL students and English native speakers. The study was distinct as none compliment response studies had been conducted to compare the compliment response between English native speakers and two different Indonesian EFL proficiency groups in which this research sought to meet this need. This study was significant for EFL teachers because it gave insight on cross-cultural understanding and brought pedagogical implication on explicit pragmatic instruction. Two research questions were set, 1. How do Indonesian EFL students and English native speakers respond compliments? 2. Is there any correlation between Indonesia EFL students’ proficiency and their compliment response use in English? The study involved three groups of participants; 5 English native speakers, 10 high-proficiency and 10 low-proficiency Indonesian EFL university students. The research instruments used in this study were as follows, an online TOEFL prediction test, focusing on grammar skill which was modified from Barron TOEFL exercise test, and a discourse completion task (DCT), consisting of 10 compliment respond items. Based on the research invitation, 20 second-year university students majoring in English education at Widya Mandira Catholic University, Kupang, East Nusa Tenggara, Indonesia who willingly participated in the research took the TOEFL prediction test online from the link provided. Students who achieved score 75-100 in test were categorized as high-proficiency students, while, students who attained score below 74 were considered as low-proficiency students. Then, the DCT survey was administered to these EFL groups and the native speaker group. Participants’ responses were coded and analyzed using categories of compliment response framework proposed by Tran. The study found out that 5 native speakers applied more compliment upgrades and appreciation token in compliment response, whereas, Indonesian EFL students combined some compliment response strategies in their utterance, such as, appreciation token, return and compliment downgrade. There is no correlation between students’ proficiency level and their CR responds as most EFL students in both groups produced less varied compliment responses and only 4 Indonesian high-proficiency students uttered more varied and were similar to the native speakers. The combination strategies used by EFL students can be explained as the influence of pragmatic transfer from L1 to L2; therefore, EFL teachers should explicitly teach more compliment response strategies to raise students’ awareness on English culture and elaborate their speaking to be more competence as close to native speakers as possible.Keywords: compliment response, English native speakers, Indonesian EFL students, speech acts
Procedia PDF Downloads 148231 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique
Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham
Abstract:
Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT
Procedia PDF Downloads 189230 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 278229 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore
Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie
Abstract:
Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model
Procedia PDF Downloads 153228 A Crystal Plasticity Approach to Model Dynamic Strain Aging
Authors: Burak Bal, Demircan Canadinc
Abstract:
Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity
Procedia PDF Downloads 260227 Cosmic Background Reduction in the Radiocarbon Measurements by Liquid Scintillation Spectrometry
Authors: Natasa Todorovic, Jovana Nikolov
Abstract:
Guard detector efficiency, cosmic background, and its variation were determinate using ultra low-level liquid scintillation spectrometer Quantulus 1220, equipped with an anti-Compton guard detector, in the surface laboratory at the University of Novi Sad, Serbia, Atmospheric pressure variation has an observable effect on the anti-Compton guard detector count rate. and the cosmic muon flux is lower during a high-pressure period. Also, the guard detector Compton continuum provides a good view of the level of gamma radiation in the laboratory environment. The efficiency of the guard detector in the channel interval from 750 to 1024 was assessed to 93.45%; efficiency in the entire window (channels 1 to 1024) was 75.23%, which is in good agreement with literature data.Keywords: cosmic radiation, background reduction, liquid scintillation counting, guard detector efficiency
Procedia PDF Downloads 157