Search results for: computer virus classification
4885 Using Baculovirus Expression Vector System to Express Envelop Proteins of Chikungunya Virus in Insect Cells and Mammalian Cells
Authors: Tania Tzong, Chao-Yi Teng, Tzong-Yuan Wu
Abstract:
Currently, Chikungunya virus (CHIKV) transmitted to humans by Aedes mosquitoes has distributed from Africa to Southeast Asia, South America, and South Europe. However, little is known about the antigenic targets for immunity, and there are no licensed vaccines or specific antiviral treatments for the disease caused by CHIKV. Baculovirus has been recognized as a novel vaccine vector with attractive characteristic features of an optional vaccine delivery vehicle. This approach provides the safety and efficacy of CHIKV vaccine. In this study, bi-cistronic recombinant baculoviruses vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP were produced. Both recombinant baculovirus can express EGFP reporter gene in insect cells to facilitate the recombinant virus isolation and purification. Examination of vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP showed that this recombinant baculovirus could induce syncytium formation in insect cells. Unexpectedly, the immunofluorescence assay revealed the expression of E1 and E2 of CHIKV structural proteins in insect cells infected by vAc-CMV-CHIKV26S-Rhir-EGFP. This result may imply that the CMV promoter can induce the transcription of CHIKV26S in insect cells. There are also E1 and E2 expression in mammalian cells transduced by vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP. The expression of E1 and E2 proteins of insect and mammalian cells was validated again by Western blot analysis. The vector construction with dual tandem promoters, which is polyhedrin and CMV promoter, has higher expression of the E1 and E2 of CHIKV structural proteins than the vector construction with CMV promoter only. Most of the E1 and E2 proteins expressed in mammalian cells were glycosylated. In the future, the expression of structural proteins of CHIKV in mammalian cells is expected can form virus-like particle, so it could be used as a vaccine for chikungunya virus.Keywords: chikungunya virus, virus-like particle, vaccines, baculovirus expression vector system
Procedia PDF Downloads 4204884 John Cunningham Virus Interaction with Multiple Sclerosis Disease Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially the John Cunningham virus (JCV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on JCV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " John Cunningham virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2019 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: MS patients are candidates for natalizumab therapy, which inhibits lymphocyte migration and increases the risk of progressive multifocal leukoencephalopathy (PML), a rare lytic infection of glial cells caused by JCV. Oligodendrocytes may be the target of JCV infection in the central nervous system (CNS). Conclusion: There is a high expression of JCV during the natalizumab treatment period for MS patients, suggesting that the virus may play a role in the development of MS by inducing an inflammatory state. Therefore, it is necessary to evaluate anti-JCV antibody serum as an important risk factor for the development of PML before deciding on the treatment course for these patients.Keywords: multiple sclerosis, John Cunningham virus, central nervous system, autoimmunity
Procedia PDF Downloads 1344883 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 924882 Generalized Linear Modeling of HCV Infection Among Medical Waste Handlers in Sidama Region, Ethiopia
Authors: Birhanu Betela Warssamo
Abstract:
Background: There is limited evidence on the prevalence and risk factors for hepatitis C virus (HCV) infection among waste handlers in the Sidama region, Ethiopia; however, this knowledge is necessary for the effective prevention of HCV infection in the region. Methods: A cross-sectional study was conducted among randomly selected waste collectors from October 2021 to 30 July 2022 in different public hospitals in the Sidama region of Ethiopia. Serum samples were collected from participants and screened for anti-HCV using a rapid immunochromatography assay. Socio-demographic and risk factor information of waste handlers was gathered by pretested and well-structured questionnaires. The generalized linear model (GLM) was conducted using R software, and P-value < 0.05 was declared statistically significant. Results: From a total of 282 participating waste handlers, 16 (5.7%) (95% CI, 4.2 – 8.7) were infected with the hepatitis C virus. The educational status of waste handlers was the significant demographic variable that was associated with the hepatitis C virus (AOR = 0.055; 95% CI = 0.012 – 0.248; P = 0.000). More married waste handlers, 12 (75%), were HCV positive than unmarried, 4 (25%) and married waste handlers were 2.051 times (OR = 2.051, 95%CI = 0.644 –6.527, P = 0.295) more prone to HCV infection, compared to unmarried, which was statistically insignificant. The GLM showed that exposure to blood (OR = 8.26; 95% CI = 1.878–10.925; P = 0.037), multiple sexual partners (AOR = 3.63; 95% CI = 2.751–5.808; P = 0.001), sharp injury (AOR = 2.77; 95% CI = 2.327–3.173; P = 0.036), not using PPE (AOR = 0.77; 95% CI = 0.032–0.937; P = 0.001), contact with jaundiced patient (AOR = 3.65; 95% CI = 1.093–4.368; P = 0 .0048) and unprotected sex (AOR = 11.91; 95% CI = 5.847–16.854; P = 0.001) remained statistically significantly associated with HCV positivity. Conclusions: The study revealed that there was a high prevalence of hepatitis C virus infection among waste handlers in the Sidama region, Ethiopia. This demonstrated that there is an urgent need to increase preventative efforts and strategic policy orientations to control the spread of the hepatitis C virus.Keywords: Hepatitis C virus, risk factors, waste handlers, prevalence, Sidama Ethiopia
Procedia PDF Downloads 24881 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2584880 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1514879 Classification of High Order Thinking Skills (HOTS)
Authors: Mohammed Alkiyumi
Abstract:
Educational systems are currently paying special attention to developing learners' higher thinking skills to develop the capabilities of human resources to deal with contemporary challenges. Although psychologists disagree about the concept of higher-order thinking skills and the skills they include, there is unlimited effort in designing them and building strategies for their implementation. The most important factor helping to develop these skills is their classification according to specific criteria, and the most important of these classifications is Bloom's classification, which is dominant in most educational systems at all levels. Previous classifications have many limitations, including the comprehensiveness of the skills they contain, the logical structure of their hierarchy, and classification criteria. Therefore, this article puts another step in this area by providing a new classification of higher-order thinking skills that includes five categories: the first response stage, transformative stage, application, reasoning stage, and the production stage with a logical justification for this classification, with some techniques to developing it among learners.Keywords: high-order thinking skills, classification, teaching, education
Procedia PDF Downloads 374878 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices
Authors: Sunita Singh, Rajani Srivastava
Abstract:
For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices
Procedia PDF Downloads 3604877 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes
Procedia PDF Downloads 4134876 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti
Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva
Abstract:
Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia
Procedia PDF Downloads 2994875 Serological and Molecular Detection of Alfalfa Mosaic Virus in the Major Potato Growing Areas of Saudi Arabia
Authors: Khalid Alhudaib
Abstract:
Potato is considered as one of the most important and potential vegetable crops in Saudi Arabia. Alfalfa mosaic virus (AMV), genus Alfamovirus, family Bromoviridae is among the broad spread of viruses in potato. During spring and fall growing seasons of potato in 2015 and 2016, several field visits were conducted in the four major growing areas of potato cultivation (Riyadh-Qaseem-Hail-Hard). The presence of AMV was detected in samples using ELISA, dot blot hybridization and/or RT-PCR. The highest occurrence of AMV was observed as 18.6% in Qaseem followed by Riyadh with 15.2% while; the lowest infection rates were recorded in Hard and Hail, 8.3 and 10.4%, respectively. The sequences of seven isolates of AMV obtained in this study were determined and the sequences were aligned with the other sequences available in the GenBank database. Analyses confirmed the low variability among AMV isolated in this study, which means that all AMV isolates may originate from the same source. Due to high incidence of AMV, other economic susceptible crops may become affected by high incidence of this virus in potato crops. This requires accurate examination of potato seed tubers to prevent the spread of the virus in Saudi Arabia. The obtained results indicated that the hybridization and ELISA are suitable techniques in the routine detection of AMV in a large number of samples while RT-PCR is more sensitive and essential for molecular characterization of AMV.Keywords: Alfamovirus, AMV, Alfalfa mosaic virus, PCR, potato
Procedia PDF Downloads 1684874 A Comparative Study of Dengue Fever in Taiwan and Singapore Based on Open Data
Authors: Wei Wen Yang, Emily Chia Yu Su
Abstract:
Dengue fever is a mosquito-borne tropical infectious disease caused by the dengue virus. After infection, symptoms usually start from three to fourteen days. Dengue virus may cause a high fever and at least two of the following symptoms, severe headache, severe eye pain, joint pains, muscle or bone pain, vomiting, feature skin rash, and mild bleeding manifestation. In addition, recovery will take at least two to seven days. Dengue fever has rapidly spread in tropical and subtropical areas in recent years. Several phenomena around the world such as global warming, urbanization, and international travel are the main reasons in boosting the spread of dengue. In Taiwan, epidemics occur annually, especially during summer and fall seasons. On the other side, Singapore government also has announced the amounts number of dengue cases spreading in Singapore. As the serious epidemic of dengue fever outbreaks in Taiwan and Singapore, countries around the Asia-Pacific region are becoming high risks of susceptible to the outbreaks and local hub of spreading the virus. To improve public safety and public health issues, firstly, we are going to use Microsoft Excel and SAS EG to do data preprocessing. Secondly, using support vector machines and decision trees builds predict model, and analyzes the infectious cases between Taiwan and Singapore. By comparing different factors causing vector mosquito from model classification and regression, we can find similar spreading patterns where the disease occurred most frequently. The result can provide sufficient information to predict the future dengue infection outbreaks and control the diffusion of dengue fever among countries.Keywords: dengue fever, Taiwan, Singapore, Aedes aegypti
Procedia PDF Downloads 2314873 Critical Role of Lipid Rafts in Influenza a Virus Binding to Host Cell
Authors: Dileep Kumar Verma, Sunil Kumar Lal
Abstract:
Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Influenza A Virus (IAV) surface protein hemagglutinin is known to play an important role in viral attachment to the host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Selective nature of Influenza A virus to utilize rafts micro-domain for efficient virus assembly and budding has been explored in depth. However, the detailed mechanism of IAV binding to host cell membrane and entry into the host remains elusive. In the present study we investigated the role of lipid rafts in early life cycle events of IAV. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol by Methyl-β-Cyclodextrin. Using GM1, a well-known lipid raft marker, we were able to observe co-localization of IAV on lipid rafts on the host cell membrane. This experiment suggests a direct involvement of lipid rafts in the initiation of the IAV life cycle. Upon disruption of lipid rafts by Methyl-b-cyclodextrin, we observed a significant reduction in IAV binding on the host cell surface indicating a significant decrease in virus attachment to coherent membrane rafts. Our results provide proof that host lipid rafts and their constituents play an important role in the adsorption of IAV. This study opens a new avenues in IAV virus-host interactions to combat infection at a very early steps of the viral lifecycle.Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1
Procedia PDF Downloads 3604872 Virus Diseases of Edible Seed Squash (Cucurbita pepo L.) in Aksaray Province
Authors: Serkan Yesil
Abstract:
Cucurbits (the Cucurbitaceae family) include 119 genera and 825 species distributed primarily in tropical and subtropical regions of the world. The major cultivated cucurbit species such as melon (Cucumis melo L.), cucumber (Cucumis sativus L.), squash (Cucurbita pepo L.), and watermelon (Citrullus lanatus (Thunb) Matsum.&Nakai) are important vegetable crops worldwide. Squash is grown for fresh consuming, as well as its seeds are used as a snack in Turkey like some Mediterranean countries and Germany, Hungary, Austria and China. Virus diseases are one of the most destructive diseases on squash which is grown for seeds in Aksaray province. In this study, it was aimed to determine the virus infections in major squash growing areas in Aksaray province. Totally 153 plant samples with common virus symptoms like mosaic, curling, blistering, mottling, distortion, shoestring, stunting and vine decline were collected from squash plants during 2014. In this study, DAS-ELISA method is used for identifying the virus infections on the plant samples. According to the results of the DAS-ELISA 84.96 % of plant samples were infected with Zucchini yellow mosaic Potyvirus (ZYMV), Watermelon mosaic Potyvirus-2 (WMV-2), Cucumber mosaic Cucumovirus (CMV), Papaya ringspot Potyvirus-watermelon strain (PRSV-W) and Squash mosaic Comovirus (SqMV). ZYMV was predominant in the research area with the ratio of 66.01 %. WMV-2 was the second important virus disease in the survey area, it was detected on the samples at the ratio of 57.51 %. Also, mixed infections of those virus infections were detected commonly in squash. Especially, ZYMV+WMV-2 mixed infections were common. Cucumber green mottle mosaic Tobamovirus (CGMMV) was not present in the research area.Keywords: Aksaray, DAS-ELISA, edible seed squash, WMV-2, ZYMV
Procedia PDF Downloads 2264871 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5434870 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations
Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang
Abstract:
A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification
Procedia PDF Downloads 4544869 Serological Screening of Barrier Maintained Rodent Colony
Authors: R. Posia, J. Mistry, K. Kamani
Abstract:
The health screening of laboratory rodents is essential for ensuring animal health and the validity of biomedical research data. Routine health monitoring is necessary to verify the effectiveness of biosecurity and the specific pathogen free (SPF) status of the colony. The present screening was performed in barrier maintained rat (Rattus norvegicus) colony. Rats were maintained under a controlled environment and strict biosecurity in the facility. The screening was performed on quarterly bases from randomly selected animals from breeding and or maintenance colonies. Selected animals were subject to blood collection under isoflurane anaesthesia. Serum was separated from the collected blood and stored samples at -60 ± 10 °C until further use. A total of 88 samples were collected quarterly bases from animals in a year. In the serological test, enzyme-linked immunosorbent assay (ELISA) was used for screening of serum samples against sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV). ELISA kits were procured from XpressBio, USA. Test serum samples were run along with positive control, negative control serum in 96 well ELISA plates as per the procedure recommended by the vendor. Test ELISA plate reading was taken in the microplate reader. This screening observed that none of the samples was observed positive for the sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV), indicating that effectiveness of biosecurity practices followed in the rodent colony. The result of serological screening helps us to declare that our rodent colony is specifically pathogen free for these pathogens.Keywords: biosecurity, ELISA, specific pathogen free, serological screening, serum
Procedia PDF Downloads 744868 Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions
Authors: Bernard L. Middleton, Susan P. Cosgrove
Abstract:
There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.Keywords: synergy pharmaceuticals, herpes treatment, herpes cure, synergy pharmaceuticals treatment
Procedia PDF Downloads 2394867 Computer Anxiety and the Use of Computerized System by University Librarians in Delta State University Library, Nigeria
Authors: L. Arumuru
Abstract:
The paper investigates computer anxiety and the use of computerized library system by university librarians in Delta State University library, Abraka, Nigeria. Some of the root causes of computer anxiety among university librarians such as lack of exposure to computers at early age, inadequate computer skills, inadequate computer training, fear at the sight of a computer, lack of understanding of how computers work, etc. were pin-pointed in the study. Also, the different services rendered in the university libraries with the aid of computers such as reference services, circulation services, acquisition services, cataloguing and classification services, etc. were identified. The study employed the descriptive survey research design through the expo-facto method, with a population of 56 librarians, while the simple percentage and frequency counts were used to analyze the data generated from the administered copies of the questionnaire. Based on the aforementioned root causes of computer anxiety and the resultant effect on computerized library system, recommendations were proffered in the study.Keywords: computer anxiety, computerized library system, library services, university librarians
Procedia PDF Downloads 3854866 Urban Development Criteria with a Focus on Resilience to Pandemics: A Case Study of Corona Virus (Covid-19)
Authors: Elham Zabetian Targhi, Niusha Fardnava, Saba Saghafi
Abstract:
Urban resilience to Corona Virus has become a major concern for cities these days. Our country also has not been safe from the destructive effects of this virus in social, economic, physical, governance, and management dimensions; and according to official statistics, hundreds of thousands of people in Iran have been infected with this virus and tens of thousands have died so far. Therefore, to measure urban resilience to this pandemic, some criteria and sub-criteria were developed based on the authors’ documentary and field studies, and their significance or weights were determined using analytical-comparative research method using a questionnaire of paired or L-Saati comparisons from the viewpoint of experts in urban sciences and urban development using AHP hierarchical analysis in EXPERT CHOICE software. Then, designing a questionnaire with a five-point Likert scale, the satisfaction of Tehran residents with the extracted criteria and sub-criteria was measured and the correlation between the important criteria in each dimension was assessed using correlation tests in SPSS16 software. According to the obtained results of AHP analysis and the scores of each sub-criterion, the weight of all criteria was normal. In the next stage, according to the pairwise correlation tests between the important criteria in each dimension from the viewpoint of urban science experts and Tehran residents, it was concluded that the reliability of the correlation between the criteria is 99%. In all the cases, the P-value or the same significance level was less than 0.05, which indicated the significance of the pairwise relations between the variables.Keywords: Urban Resilience, Pandemics, Corona Virus (Covid-19), Criteria.
Procedia PDF Downloads 814865 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach
Authors: Sanchali Das, Swapan Debbarma
Abstract:
Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.Keywords: Christian Kokborok song, mood classification, music information retrieval, regression
Procedia PDF Downloads 2174864 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles
Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav
Abstract:
The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid
Procedia PDF Downloads 4904863 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface
Procedia PDF Downloads 3944862 Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma
Authors: Lian Zeng
Abstract:
Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety.Keywords: oncolytic virus, WNV-CD86, immunotherapy drugs, glioma, neuroblastoma
Procedia PDF Downloads 1204861 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 4074860 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification
Authors: Mohammad Sarchami, Mohsen Zeinalkhani
Abstract:
Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm
Procedia PDF Downloads 2464859 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus
Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 2424858 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.Keywords: politics, personality traits, LIWC, machine learning
Procedia PDF Downloads 4924857 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3194856 Evaluation of Vehicle Classification Categories: Florida Case Study
Authors: Ren Moses, Jaqueline Masaki
Abstract:
This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic
Procedia PDF Downloads 178