Search results for: computer assisted classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5079

Search results for: computer assisted classification

4989 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 526
4988 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 546
4987 Computer Anxiety and the Use of Computerized System by University Librarians in Delta State University Library, Nigeria

Authors: L. Arumuru

Abstract:

The paper investigates computer anxiety and the use of computerized library system by university librarians in Delta State University library, Abraka, Nigeria. Some of the root causes of computer anxiety among university librarians such as lack of exposure to computers at early age, inadequate computer skills, inadequate computer training, fear at the sight of a computer, lack of understanding of how computers work, etc. were pin-pointed in the study. Also, the different services rendered in the university libraries with the aid of computers such as reference services, circulation services, acquisition services, cataloguing and classification services, etc. were identified. The study employed the descriptive survey research design through the expo-facto method, with a population of 56 librarians, while the simple percentage and frequency counts were used to analyze the data generated from the administered copies of the questionnaire. Based on the aforementioned root causes of computer anxiety and the resultant effect on computerized library system, recommendations were proffered in the study.

Keywords: computer anxiety, computerized library system, library services, university librarians

Procedia PDF Downloads 387
4986 Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock

Authors: Hamida Y. Mostafa, Ghada E. Khedr, Dina M. Abd El-Aty

Abstract:

Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions.

Keywords: extractive desulfurization, microwave assisted extraction, petroleum fractions, acetonitrile and methanol

Procedia PDF Downloads 102
4985 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 457
4984 Deep Learning-Based Channel Estimation for Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 109
4983 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 221
4982 Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean

Authors: Ghazi Faisal Najmuldeen, Rosli Mohd Yunus, Nurfarahin Bt Harun, Mardhiana Binti Ismail

Abstract:

The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid.

Keywords: microwave assisted extraction (MAE), castor oil, ricinoleic acid, linoleic acid

Procedia PDF Downloads 503
4981 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods

Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul

Abstract:

Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.

Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction

Procedia PDF Downloads 234
4980 Cross Professional Team-Assisted Teaching Effectiveness

Authors: Shan-Yu Hsu, Hsin-Shu Huang

Abstract:

The main purpose of this teaching research is to design an interdisciplinary team-assisted teaching method for trainees and interns and review the effectiveness of this teaching method on trainees' understanding of peritoneal dialysis. The teaching research object is the fifth and sixth-grade trainees in a medical center's medical school. The teaching methods include media teaching, demonstration of technical operation, face-to-face communication with patients, special case discussions, and field visits to the peritoneal dialysis room. Evaluate learning effectiveness before, after, and verbally. Statistical analysis was performed using the SPSS paired-sample t-test to analyze whether there is a difference in peritoneal dialysis professional cognition before and after teaching intervention. Descriptive statistics show that the average score of the previous test is 74.44, the standard deviation is 9.34, the average score of the post-test is 95.56, and the standard deviation is 5.06. The results of the t-test of the paired samples are shown as p-value = 0.006, showing the peritoneal dialysis professional cognitive test. Significant differences were observed before and after. The interdisciplinary team-assisted teaching method helps trainees and interns to improve their professional awareness of peritoneal dialysis. At the same time, trainee physicians have positive feedback on the inter-professional team-assisted teaching method. This teaching research finds that the clinical ability development education of trainees and interns can provide cross-professional team-assisted teaching methods to assist clinical teaching guidance.

Keywords: monitor quality, patient safety, health promotion objective, cross-professional team-assisted teaching methods

Procedia PDF Downloads 143
4979 Work-Home Interference and Emotional Exhaustion: The Role of Psychological Detachment, Relaxation and Technology-Assisted Supplemental Work

Authors: Nidhi S. Bisht

Abstract:

The study examines the role of work-home interference, on enhancing emotional exhaustion in the branch officers of private MFIs in India. Additionally, the moderating role of recovery experiences and technology-assisted supplemental work (TASW) were studied. With the increasing expectations to perform job related tasks at home, technology-assisted supplemental work (TASW) was hypothesized to positively moderate the relationship between work-home interference and emotional exhaustion. Further, it was expected that recovery experiences-psychological detachment, relaxation will help to recover and unwind from work and negatively moderate the relationship between work-home interference and emotional exhaustion. Results of SEM-analyses largely offered support for the hypotheses. These findings increase our insight in the processes leading to increased emotional exhaustion and suggest that employees can protect themselves from emotional exhaustion by keeping a tab on technology-assisted supplemental work and facilitating recovery experiences.

Keywords: emotional exhaustion, India, microfinance institutions (MFIs), work-home interference

Procedia PDF Downloads 228
4978 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
4977 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification

Authors: Mohammad Sarchami, Mohsen Zeinalkhani

Abstract:

Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.

Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm

Procedia PDF Downloads 248
4976 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
4975 Drawings as a Methodical Access to Reconstruct Children's Perspective on a Horse-Assisted Intervention

Authors: Annika Barzen

Abstract:

In this article, the collection and analysis of drawings are implemented and discussed as a methodological approach to reconstruct children's perspective on horse-assisted interventions. For this purpose, drawings of three children (8-10 years old) were included in the research process in order to clarify the question of what insights can be derived from the drawings about the child's perspective on the intervention. The children were asked to draw a picture of themselves at the horse stable. Practical implementation considerations are disclosed. The developed analysis steps consider the work of two art historians (Erwin Panofsky and Max Imdahl) to capture the visual sense and to interpret the children's drawings. Relevant topics about the children's perspective can be inferred from the drawings. In the drawings, the following topics are important for the children: Overcoming challenges and fears in handling the horse, support from an adult in handling the horse and feeling self-confident and competent to act after completing tasks with the horse. The drawings show the main topics which are relevant for the children and can be used as a basis for conversation. All in all, the child's drawing offers a useful addition to other survey methods in order to gain further insights into the experiences of children in a horse-assisted setting.

Keywords: children's perspective, interpret children's drawings, equine-assisted-intervention, methodical analysis

Procedia PDF Downloads 154
4974 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 495
4973 The Accuracy of an In-House Developed Computer-Assisted Surgery Protocol for Mandibular Micro-Vascular Reconstruction

Authors: Christophe Spaas, Lies Pottel, Joke De Ceulaer, Johan Abeloos, Philippe Lamoral, Tom De Backer, Calix De Clercq

Abstract:

We aimed to evaluate the accuracy of an in-house developed low-cost computer-assisted surgery (CAS) protocol for osseous free flap mandibular reconstruction. All patients who underwent primary or secondary mandibular reconstruction with a free (solely or composite) osseous flap, either a fibula free flap or iliac crest free flap, between January 2014 and December 2017 were evaluated. The low-cost protocol consisted out of a virtual surgical planning, a prebend custom reconstruction plate and an individualized free flap positioning guide. The accuracy of the protocol was evaluated through comparison of the postoperative outcome with the 3D virtual planning, based on measurement of the following parameters: intercondylar distance, mandibular angle (axial and sagittal), inner angular distance, anterior-posterior distance, length of the fibular/iliac crest segments and osteotomy angles. A statistical analysis of the obtained values was done. Virtual 3D surgical planning and cutting guide design were performed with Proplan CMF® software (Materialise, Leuven, Belgium) and IPS Gate (KLS Martin, Tuttlingen, Germany). Segmentation of the DICOM data as well as outcome analysis were done with BrainLab iPlan® Software (Brainlab AG, Feldkirchen, Germany). A cost analysis of the protocol was done. Twenty-two patients (11 fibula /11 iliac crest) were included and analyzed. Based on voxel-based registration on the cranial base, 3D virtual planning landmark parameters did not significantly differ from those measured on the actual treatment outcome (p-values >0.05). A cost evaluation of the in-house developed CAS protocol revealed a 1750 euro cost reduction in comparison with a standard CAS protocol with a patient-specific reconstruction plate. Our results indicate that an accurate transfer of the planning with our in-house developed low-cost CAS protocol is feasible at a significant lower cost.

Keywords: CAD/CAM, computer-assisted surgery, low-cost, mandibular reconstruction

Procedia PDF Downloads 140
4972 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording

Authors: P. Tueku, P. Supnithi, R. Wongsathan

Abstract:

Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.

Keywords: heat-assisted magnetic recording, thermal Williams-Comstock equation, microtrack model, equalizer

Procedia PDF Downloads 351
4971 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 180
4970 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
4969 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
4968 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 133
4967 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 154
4966 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University

Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang

Abstract:

Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.

Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University

Procedia PDF Downloads 315
4965 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 461
4964 Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality

Authors: Aftab Ali

Abstract:

Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen.

Keywords: cryopreservation, computer assisted sperm, flow cytometry, luminometry

Procedia PDF Downloads 148
4963 The Impact of Animal-Assisted Pedagogy on Social Participation in Heterogenous Classrooms: A Survey Considering the Pupils Perspective on Animal-Assisted Teaching

Authors: Mona Maria Mombeck

Abstract:

Social participation in heterogeneous classrooms is one of the main goals in inclusive education. Children with special educational needs (SEN) and children with learning difficulties, or behavioural problems not diagnosed as SEN, are more likely to be excluded by other children than others. It is proven that the presence of dogs, as well as contact with dogs, increases the likelihood of positive social behaviour between humans. Therefore, animal-assisted pedagogy may be presumed to be a constructive way of inclusive teaching and facing the challenges of social inclusion in school classes. This study investigates the presence of a friendly dog in heterogeneous groups of pupils in order to evaluate the influence of dogs on facets of social participation of children in school. 30 German pupils, aged from 10 to 14, in four classes were questioned about their social participation before and after they were educated for a year in school with animal-assisted-pedagogy, using the problem-concerned interview method. In addition, the post-interview includes some general questions about the putative differences or similarities of being educated with and without a dog. The interviews were analysed with the qualitative-content-analysis using QDA software. The results showed that a dog has a positive impact on the atmosphere, student relationships, and well-being in class. Regarding the atmosphere, the pupils mainly argued that the improvement was caused by taking into account the dog’s well-being, respecting the dog-related rules, and by emotional self-regulation. It can be supposed that children regard the rules concerning the dog as more relevant to them than rules, not concerning the dog even if they require the same behaviour and goal. Furthermore, a dog has a positive impact on emotional self-regulation and, therefore, on pupil’s behaviour in class and the atmosphere. In terms of the statements about relationships, the dog’s presence was mainly seen to provide both a unifying aim and a uniting topic to talk about. The improved well-being was described as a feeling of joy and peace of mind. Moreover, the teacher was evaluated as more friendly and trustworthy after animal-assisted teaching. Nevertheless, animal-assisted pedagogy can, rarely, cause problems as well, such as jealousy, distraction, or concerns about the well-being of the dog. The study could prove the relevance of animal-assisted pedagogy for facing the challenges of social participation in inclusive education.

Keywords: animal-assisted-pedagogy, inclusive education, human-animal-interactions, social participation

Procedia PDF Downloads 115
4962 Selection of Appropriate Classification Technique for Lithological Mapping of Gali Jagir Area, Pakistan

Authors: Khunsa Fatima, Umar K. Khattak, Allah Bakhsh Kausar

Abstract:

Satellite images interpretation and analysis assist geologists by providing valuable information about geology and minerals of an area to be surveyed. A test site in Fatejang of district Attock has been studied using Landsat ETM+ and ASTER satellite images for lithological mapping. Five different supervised image classification techniques namely maximum likelihood, parallelepiped, minimum distance to mean, mahalanobis distance and spectral angle mapper have been performed on both satellite data images to find out the suitable classification technique for lithological mapping in the study area. Results of these five image classification techniques were compared with the geological map produced by Geological Survey of Pakistan. The result of maximum likelihood classification technique applied on ASTER satellite image has the highest correlation of 0.66 with the geological map. Field observations and XRD spectra of field samples also verified the results. A lithological map was then prepared based on the maximum likelihood classification of ASTER satellite image.

Keywords: ASTER, Landsat-ETM+, satellite, image classification

Procedia PDF Downloads 394
4961 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Vocabulary in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaar

Abstract:

Objectives: To assess the effect of using audio-visual aids and computer-assisted/ aided language instruction (CALI) in the performance of students of special needs studying vocabulary course. Methods: The performance of forty students of special needs (males and females) who used audiovisual aids and CALI in their vocabulary course at al-Malādh school for students of special needs was compared to that of another group (control group) of the same number and age (8-18). Again, subjects in the experimental group were given lessons using audio-visual aids and CALI, while those in the control group were given lessons using ordinary educational aids only, although both groups almost shared the same features (class environment, speech language therapist (SLT), etc.). Pre-andposttest was given at the beginning and end of the semester and a qualitative and quantitative analysis followed. Results & conclusions: Results of the present experimental study's pre-and-posttests indicated that the performance of the students in the first group was higher than that of those of the second group (34.27%, 73.82% vs. 33.57%, 34.92%, respectively). Compared with females, males’ performance was higher (1515 scores vs. 1438 scores). Such findings suggest that the presence of these audiovisual aids and CALI in the classes of students of special needs, especially if they are studying vocabulary building course is very important due to their usefulness in the improvement of performance of the students of special needs.

Keywords: language components, vocabulary, audio-visual aids, CALI, special needs, students, SLTs

Procedia PDF Downloads 50
4960 The Significance of Computer Assisted Language Learning in Teaching English Grammar in Tribal Zone of Chhattisgarh

Authors: Yogesh Kumar Tiwari

Abstract:

Chhattisgarh has realized the fundamental role of information and communication technology in the globalized world where knowledge is at the top for the growth and intellectual development. They are spreading so widely that one feels lagging behind if not using them. The influence of these radiating and technological tools has encompassed all aspects of the educational, business, and economic sectors of our world. Undeniably the computer has not only established itself globally in all walks of life but has acquired a fundamental role of paramount importance in the educational process also. This role is getting all pervading and more powerful as computers are being manufactured to be cheaper, smaller in size, adaptable and easy to handle. Computers are becoming indispensable to teachers because of their enormous capabilities and extensive competence. This study aims at observing the effect of using computer based software program of English language on the achievement of undergraduate level students studying in tribal area like Sarguja Division, Chhattisgarh, India. To testify the effect of an innovative teaching in the graduate classroom in tribal area 50 students were randomly selected and separated into two groups. The first group of 25 students were taught English grammar i.e., passive voice/narration, through traditional method using chalk and blackboard asking some formal questions. The second group, the experimental one, was taught English grammar i.e., passive voice/narration, using computer, projector with power point presentation of grammatical items. The statistical analysis was done on the students’ learning capacities and achievement. The result was extremely mesmerizing not only for the teacher but for taught also. The process of the recapitulation demonstrated that the students of experimental group responded the answers of the questions enthusiastically with innovative sense of learning. In light of the findings of the study, it was recommended that teachers and professors of English ought to use self-made instructional program in their teaching process particularly in tribal areas.

Keywords: achievement computer assisted language learning, use of instructional program

Procedia PDF Downloads 149