Search results for: climatological weather data measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26638

Search results for: climatological weather data measurement

26548 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal

Authors: Linta Rose, Prasad K. Bhaskaran

Abstract:

Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.

Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind

Procedia PDF Downloads 208
26547 Studying Language of Immediacy and Language of Distance from a Corpus Linguistic Perspective: A Pilot Study of Evaluation Markers in French Television Weather Reports

Authors: Vince Liégeois

Abstract:

Language of immediacy and distance: Within their discourse theory, Koch & Oesterreicher establish a distinction between a language of immediacy and a language of distance. The former refers to those discourses which are oriented more towards a spoken norm, whereas the latter entails discourses oriented towards a written norm, regardless of whether they are realised phonically or graphically. This means that an utterance can be realised phonically but oriented more towards the written language norm (e.g., a scientific presentation or eulogy) or realised graphically but oriented towards a spoken norm (e.g., a scribble or chat messages). Research desiderata: The methodological approach from Koch & Oesterreicher has often been criticised for not providing a corpus-linguistic methodology, which makes it difficult to work with quantitative data or address large text collections within this research paradigm. Consequently, the Koch & Oesterreicher approach has difficulties gaining ground in those research areas which rely more on corpus linguistic research models, like text linguistics and LSP-research. A combinatory approach: Accordingly, we want to establish a combinatory approach with corpus-based linguistic methodology. To this end, we propose to (i) include data about the context of an utterance (e.g., monologicity/dialogicity, familiarity with the speaker) – which were called “conditions of communication” in the original work of Koch & Oesterreicher – and (ii) correlate the linguistic phenomenon at the centre of the inquiry (e.g., evaluation markers) to a group of linguistic phenomena deemed typical for either distance- or immediacy-language. Based on these two parameters, linguistic phenomena and texts could then be mapped on an immediacy-distance continuum. Pilot study: To illustrate the benefits of this approach, we will conduct a pilot study on evaluation phenomena in French television weather reports, a form of domain-sensitive discourse which has often been cited as an example of a “text genre”. Within this text genre, we will look at so-called “evaluation markers,” e.g., fixed strings like bad weather, stifling hot, and “no luck today!”. These evaluation markers help to communicate the coming weather situation towards the lay audience but have not yet been studied within the Koch & Oesterreicher research paradigm. Accordingly, we want to figure out whether said evaluation markers are more typical for those weather reports which tend more towards immediacy or those which tend more towards distance. To this aim, we collected a corpus with different kinds of television weather reports,e.g., as part of the news broadcast, including dialogue. The evaluation markers themselves will be studied according to the explained methodology, by correlating them to (i) metadata about the context and (ii) linguistic phenomena characterising immediacy-language: repetition, deixis (personal, spatial, and temporal), a freer choice of tense and right- /left-dislocation. Results: Our results indicate that evaluation markers are more dominantly present in those weather reports inclining towards immediacy-language. Based on the methodology established above, we have gained more insight into the working of evaluation markers in the domain-sensitive text genre of (television) weather reports. For future research, it will be interesting to determine whether said evaluation markers are also typical for immediacy-language-oriented in other domain-sensitive discourses.

Keywords: corpus-based linguistics, evaluation markers, language of immediacy and distance, weather reports

Procedia PDF Downloads 203
26546 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 203
26545 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition

Authors: Ramesh Chandra Majhi

Abstract:

Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.

Keywords: optimization, passenger car unit, saturation flow, signalized intersection

Procedia PDF Downloads 316
26544 Evaluating the Impact of Extreme Weather (Flooding) Experience on Climate Change Perceptions in Accra, Ghana

Authors: Bright Annang Baah

Abstract:

Evaluating public perceptions of climate change risk and the elements that impact them has been shown to be critical in developing support for climate change action. Previous research has found a variety of elements, including the experience of extreme weather events, that impact public perceptions and worries about climate change. However, little is known about the public's perception of climate change risks and the variables that influence them in developing countries. Using a household survey, this study attempted to evaluate respondents' risk perceptions of climate change, as well as the impact of flooding experience on such beliefs. The findings demonstrate that flood victims have a greater risk perception and are more concerned about climate change than non-victims. Concerns regarding the effects of climate change, on the other hand, were found to be the lowest when compared to other pressing challenges confronting the country. This study's findings contribute to the understanding of climate change risk perception and the impact of extreme weather events from the perspective of a developing nation.

Keywords: climate change risk perception, harsh weather, perceived concern, Accra, Ghana

Procedia PDF Downloads 30
26543 A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle: Smoothness, Stiffness and Softness

Authors: Ka-Yan Yim, Chi-Wai Kan

Abstract:

This paper conducts a comparison study using KES-FB and PhabrOmeter to measure 58 selected warp knitted fabric hand properties. Fabric samples were selected and measured by both KES-FB and PhabrOmeter. Results show differences between these two measurement methods. Smoothness and stiffness values obtained by KES-FB were found significant correlated (p value = 0.003 and 0.022) to the PhabrOmeter results while softness values between two measurement methods did not show significant correlation (p value = 0.828). Disagreements among these two measurement methods imply limitations on different mechanism principles when facing warp knitted fabrics. Subjective measurement methods and further studies are suggested in order to ascertain deeper investigation on the mechanisms of fabric hand perceptions.

Keywords: fabric hand, fabric objective measurement, KES-FB, PhabrOmeter

Procedia PDF Downloads 200
26542 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 311
26541 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations

Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska

Abstract:

Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.

Keywords: scaffolding, health and safety at work, temperature, wind velocity

Procedia PDF Downloads 160
26540 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 60
26539 Wind Speed Data Analysis in Colombia in 2013 and 2015

Authors: Harold P. Villota, Alejandro Osorio B.

Abstract:

The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.

Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation

Procedia PDF Downloads 150
26538 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 299
26537 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 217
26536 Wireless Optic Last Mile Multi-Gbit/s Communication System

Authors: Manea Viorel, Puscoci Sorin, Stoichescu Dan Alexandru

Abstract:

Free Space Optics (FSO) is an optical telecommunication system that uses laser beam to transmit data at high bit rates via terrestrial atmosphere. This article describes a method to obtain higher bit rates, under unfavorable weather conditions using multiple optical beams, which carry information with low optical power. Optical link quality assessment is given by the attenuation on different weather conditions. The goal of this paper is to compare two transmission techniques: mono and multi beam, both affected by atmospheric attenuation, using OOK and L-PPM modulation. Link availability is evaluated using eye-diagram that provides information about the overall bit error rate of the system.

Keywords: free space optics, wireless optic, laser communication, spatial diversity

Procedia PDF Downloads 497
26535 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium

Authors: Jiemiao Chen, Shuoxun Xu

Abstract:

The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.

Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation

Procedia PDF Downloads 186
26534 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: fast vs slow BTI, fast wafer level reliability (FWLR), negative bias temperature instability (NBTI), NBTI measurement system, metal-oxide-semiconductor field-effect transistor (MOSFET), NBTI recovery, reliability

Procedia PDF Downloads 408
26533 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 413
26532 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 88
26531 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 417
26530 User Experience Measurement of User Interfaces

Authors: Mohammad Hashemi, John Herbert

Abstract:

Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.

Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction

Procedia PDF Downloads 490
26529 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 449
26528 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 373
26527 A Low-Cost Air Quality Monitoring Internet of Things Platform

Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis

Abstract:

In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.

Keywords: distributed sensor system, environmental monitoring, Internet of Things, smart cities

Procedia PDF Downloads 131
26526 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 69
26525 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm

Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra

Abstract:

With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.

Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction

Procedia PDF Downloads 107
26524 Analysis of Extreme Case of Urban Heat Island Effect and Correlation with Global Warming

Authors: Kartikey Gupta

Abstract:

Global warming and environmental degradation are at their peak today, with the years after 2000A.D. giving way to 15 hottest years in terms of average temperatures. In India, much of the standard temperature measuring equipment are located in ‘developed’ urban areas, hence showing us an incomplete picture in terms of the climate across many rural areas, which comprises most of the landmass. This study showcases data studied by the author since 3 years at Vatsalya’s Children’s village, in outskirts of Jaipur, Rajasthan, India; in the midst of semi-arid topography, where consistently huge temperature differences of up to 15.8 degrees Celsius from local Jaipur weather only 30 kilometers away, are stunning yet scary at the same time, encouraging analysis of where the natural climatic pattern is heading due to rapid unrestricted urbanization. Record-breaking data presented in this project enforces the need to discuss causes and recovery techniques. This research further explores how and to what extent we are causing phenomenal disturbances in the natural meteorological pattern by urban growth. Detailed data observations using a standardized ambient weather station at study site and comparing it with closest airport weather data, evaluating the patterns and differences, show striking differences in temperatures, wind patterns and even rainfall quantity, especially during high-pressure zone days. Winter-time lows dip to 8 degrees below freezing with heavy frost and ice, while only 30 kms away minimum figures barely touch single-digit temperatures. Human activity is having an unprecedented effect on climatic patterns in record-breaking trends, which is a warning of what may follow in the next 15-25 years for the next generation living in cities, and a serious exploration into possible solutions is a must.

Keywords: climate change, meteorology, urban heat island, urbanization

Procedia PDF Downloads 74
26523 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 154
26522 Biodiversity of Pathogenic and Toxigenic Fungi Associated with Maize Grains Sampled across Egypt

Authors: Yasser Shabana, Khaled Ghoneem, Nehal Arafat, Younes Rashad, Dalia Aseel, Bruce Fitt, Aiming Qi, Benjamine Richard

Abstract:

Providing food for more than 100 million people is one of Egypt's main challenges facing development. The overall goal is to formulate strategies to enhance food security in light of population growth. Two hundred samples of maize grains from 25 governates were collected. For the detection of seed-borne fungi, the deep-freezing blotter method (DFB) and washing method (ISTA 1999) were used. A total of 41 fungal species was recovered from maize seed samples. Weather data from 30 stations scattered all over Egypt and covering the major maize growing areas were obtained. Canonical correspondence analysis of data for the obtained fungal genera with temperature, relative humidity, precipitation, wind speed, or solar radiation revealed that relative humidity, temperature and wind speed were the most influential weather variables.

Keywords: biodiversity, climate change, maize, seed-borne fungi

Procedia PDF Downloads 148
26521 Measurement Tools of the Maturity Model for IT Service Outsourcing in Higher Education Institutions

Authors: Victoriano Valencia García, Luis Usero Aragonés, Eugenio J. Fernández Vicente

Abstract:

Nowadays, the successful implementation of ICTs is vital for almost any kind of organization. Good governance and ICT management are essential for delivering value, managing technological risks, managing resources and performance measurement. In addition, outsourcing is a strategic IT service solution which complements IT services provided internally in organizations. This paper proposes the measurement tools of a new holistic maturity model based on standards ISO/IEC 20000 and ISO/IEC 38500, and the frameworks and best practices of ITIL and COBIT, with a specific focus on IT outsourcing. These measurement tools allow independent validation and practical application in the field of higher education, using a questionnaire, metrics tables, and continuous improvement plan tables as part of the measurement process. Guidelines and standards are proposed in the model for facilitating adaptation to universities and achieving excellence in the outsourcing of IT services.

Keywords: IT governance, IT management, IT services, outsourcing, maturity model, measurement tools

Procedia PDF Downloads 578
26520 Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis

Authors: Tugrul Torun, Ihsan A. Yuksel, Si̇nem On Aktan, Taha K. Vezi̇roglu

Abstract:

In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated.

Keywords: coordinate measurement, CMM, comparison, uncertainty

Procedia PDF Downloads 194
26519 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 95