Search results for: binary data matrix model
37287 Deployment of Matrix Transpose in Digital Image Encryption
Authors: Okike Benjamin, Garba E J. D.
Abstract:
Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.Keywords: image encryption, matrices, pixel, matrix transpose
Procedia PDF Downloads 42137286 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 50137285 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria
Authors: Festus M. Epetimehin
Abstract:
This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.Keywords: PSM, binary logit model, Agri-SME
Procedia PDF Downloads 9737284 Parallel Computation of the Covariance-Matrix
Authors: Claude Tadonki
Abstract:
We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.Keywords: covariance-matrix, multicore, numerical computing, parallel computing
Procedia PDF Downloads 31237283 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 12337282 Principle Components Updates via Matrix Perturbations
Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook
Abstract:
This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X ∈ R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation
Procedia PDF Downloads 19537281 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 20337280 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees
Authors: Doru Anastasiu Popescu, Dan Rădulescu
Abstract:
In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree
Procedia PDF Downloads 35537279 Texture Analysis of Grayscale Co-Occurrence Matrix on Mammographic Indexed Image
Authors: S. Sushma, S. Balasubramanian, K. C. Latha
Abstract:
The mammographic image of breast cancer compressed and synthesized to get co-efficient values which will be converted (5x5) matrix to get ROI image where we get the highest value of effected region and with the same ideology the technique has been extended to differentiate between Calcification and normal cell image using mean value derived from 5x5 matrix valuesKeywords: texture analysis, mammographic image, partitioned gray scale co-oocurance matrix, co-efficient
Procedia PDF Downloads 53437278 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 8237277 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 17537276 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch
Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee
Abstract:
This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.Keywords: adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector
Procedia PDF Downloads 19937275 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 29137274 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning
Procedia PDF Downloads 31237273 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images
Authors: Sophia Shi
Abstract:
Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG
Procedia PDF Downloads 13237272 E-Bike FE Model Analysis: Connection Stiffness of Elements with Different DOFs
Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li
Abstract:
Finite Element (FE) model of simplified e-bike structure was generated by main frame with two tiers, which consisted of pipe, mass, beam, and shell elements (pipe 289, beam188, shell 181, shell 281, combin14, link11, mass21). These elements would be introduced and demonstrated using mathematical formulas. Based on coupling theory, constrain equations was proposed. Exporting all the parameters obtained from theory part, the connection stiffness matrix of the whole e-bike structure between each of these elements was detected.Keywords: coupling theory, stiffness matrix, e-bike, finite element model
Procedia PDF Downloads 37537271 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables
Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi
Abstract:
This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables
Procedia PDF Downloads 36737270 Redundancy Component Matrix and Structural Robustness
Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song
Abstract:
We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.Keywords: Structural Robustness, Structural Reliability, Redundancy Component, Redundancy Matrix
Procedia PDF Downloads 27437269 Pyramid Binary Pattern for Age Invariant Face Verification
Authors: Saroj Bijarnia, Preety Singh
Abstract:
We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.Keywords: biometrics, age invariant, verification, support vector machine
Procedia PDF Downloads 35437268 Multiple Images Stitching Based on Gradually Changing Matrix
Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang
Abstract:
Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix
Procedia PDF Downloads 31937267 Nano-Structured Hydrophobic Silica Membrane for Gas Separation
Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe
Abstract:
Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method
Procedia PDF Downloads 12237266 Investigation of the Grain-Boundary Segregation Transition in the Binary Fe-C Alloy
Authors: Végh Ádám, Mekler Csaba, Dezső András, Szabó Dávid, Stomp Dávid, Kaptay György
Abstract:
Grain boundary segregation transition (GBST) has been calculated by a thermodynamic model in binary alloys. The method is used on cementite (Fe3C) segregation in base-centered cubic (ferrite) iron (Fe) in the Fe-C binary system. The GBST line is shown in the Fe3C lacking part of the phase diagram with high solvent (Fe) concentration. At a lower solute content (C) or at higher temperature the grain boundary is composed mostly of the solvent atoms (Fe). On higher concentration compared to the GBST line or at lower temperature a phase transformation occurs at the grain boundary, the latter mostly composed of the associates (Fe3C). These low-segregation and high-segregation states are first order interfacial phase transitions of the grain boundary and can be transformed into each other reversibly. These occur when the GBST line is crossed by changing the bulk composition or temperature.Keywords: GBST, cementite, segregation, Fe-C alloy
Procedia PDF Downloads 58537265 Modelling and Control of Binary Distillation Column
Authors: Narava Manose
Abstract:
Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.Keywords: modelling, distillation column, control, binary distillation
Procedia PDF Downloads 27737264 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis
Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman
Abstract:
Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation
Procedia PDF Downloads 38937263 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 15937262 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 26237261 Analysis of Artificial Hip Joint Using Finite Element Method
Authors: Syed Zameer, Mohamed Haneef
Abstract:
Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach
Procedia PDF Downloads 35737260 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 35037259 Matrix Method Posting
Authors: Varong Pongsai
Abstract:
The objective of this paper is introducing a new method of accounting posting which is called Matrix Method Posting. This method is based on the Matrix operation of pure Mathematics. Although, accounting field is classified as one of the social-science knowledge, many of accounting operations are placed by Mathematics sign and operation. Through the operation applying, it seems to be that the operations of Mathematics should be applied to accounting possibly. So, this paper tries to over-lap Mathematics logic to accounting logic smoothly. According to the context of discovery, deductive approach is employed to prove a simultaneously logical concept of both Mathematics and Accounting. The result proves that the Matrix can be placed to operate accounting perfectly, because Matrix and accounting logic also have a similarity concept which is balancing 2 sides during operations. Moreover, the Matrix posting also has a lot of benefit. It can help financial analyst calculating financial ratios comfortably. Furthermore, the matrix determinant which is a signature operation itself also helps auditors checking out the correction of clients’ recording. If the determinant is not equaled to 0, it will point out that the recording process of clients getting into the problem. Finally, the Matrix should be easily determining a concept of merger and consolidation far beyond the present day concept.Keywords: matrix method posting, deductive approach, determinant, accounting application
Procedia PDF Downloads 36737258 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I
Authors: Khaled R. Khater
Abstract:
The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D
Procedia PDF Downloads 107