Search results for: adaptive and non-adaptive spectral estimation
3475 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments
Authors: Keunhong Chae, Seokho Yoon
Abstract:
In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol
Procedia PDF Downloads 3533474 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM
Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method
Procedia PDF Downloads 4043473 Comparison of Presented Definitions to Authenticity and Integrity
Authors: Golnaz Salehi Mourkani
Abstract:
Two conception of Integrity and authenticity, in texts have just applied respectively for adaptive reuse and conservation, which in comparison with word “Integrity” in texts related to adaptive reuse is much more seen than Authenticity, which is often applied with conservation. According to Stove, H., (2007) in some cases, this conception have used with this form “integrity/authenticity” in texts, that cause to infer one conception of both. In this article, with referring to definitions and comparison of aspects specialized to both concept of “Authenticity and Integrity” through literature review, it was attempted to examine common and distinctive aspects of each one, then with this method we can reach their differences in adaptive reuse.Keywords: adaptive reuse, integrity, authenticity, conservation
Procedia PDF Downloads 4303472 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5833471 Parameters Estimation of Multidimensional Possibility Distributions
Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin
Abstract:
We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification
Procedia PDF Downloads 4703470 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 2613469 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control
Authors: A. Mansouri, F. Krim
Abstract:
This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation
Procedia PDF Downloads 3793468 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 4353467 A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases.Keywords: packet loss probability estimation, finite memory filter, infinite memory filter, Kalman filter
Procedia PDF Downloads 6723466 The Respiration Indices of the High Skilled Orienteer Athletes
Authors: Penchuk A. Vovkanych
Abstract:
The adaptive changes in the respiratory system provide the background for the increase of aerobic capacity and sport results on the middle and long distances runners. Effect of such adaptive changes in the sport orienteering remains poorly investigated. Therefore our study was undertaken to reveal the adaptive changes in the respiration indices of high skilled orienteer athletes.Keywords: adaptation, external, functional state, respiration, running, sport orienteering
Procedia PDF Downloads 4863465 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller
Authors: Mert Turanli, Hakan Temeltas
Abstract:
In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots
Procedia PDF Downloads 3483464 An Overview of Adaptive Channel Equalization Techniques and Algorithms
Authors: Navdeep Singh Randhawa
Abstract:
Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique.Keywords: channel equalization, adaptive equalizer, least mean square, recursive least square
Procedia PDF Downloads 4503463 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System
Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal
Abstract:
In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system
Procedia PDF Downloads 4853462 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects
Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta
Abstract:
Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect
Procedia PDF Downloads 2143461 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 3723460 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 4853459 VaR Estimation Using the Informational Content of Futures Traded Volume
Authors: Amel Oueslati, Olfa Benouda
Abstract:
New Value at Risk (VaR) estimation is proposed and investigated. The well-known two stages Garch-EVT approach uses conditional volatility to generate one step ahead forecasts of VaR. With daily data for twelve stocks that decompose the Dow Jones Industrial Average (DJIA) index, this paper incorporates the volume in the first stage volatility estimation. Afterwards, the forecasting ability of this conditional volatility concerning the VaR estimation is compared to that of a basic volatility model without considering any trading component. The results are significant and bring out the importance of the trading volume in the VaR measure.Keywords: Garch-EVT, value at risk, volume, volatility
Procedia PDF Downloads 2853458 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data
Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian
Abstract:
This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment
Procedia PDF Downloads 213457 Power-Aware Adaptive Coverage Control with Consensus Protocol
Authors: Mert Turanli, Hakan Temeltas
Abstract:
In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination
Procedia PDF Downloads 3533456 Wireless Battery Charger with Adaptive Rapid-Charging Algorithm
Authors: Byoung-Hee Lee
Abstract:
Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime.Keywords: wireless, battery charger, adaptive, rapid-charging
Procedia PDF Downloads 3773455 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210
Procedia PDF Downloads 3493454 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2793453 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 4783452 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 1913451 Parameter Estimation of Induction Motors by PSO Algorithm
Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad
Abstract:
After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method
Procedia PDF Downloads 6333450 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: computer vision, pose estimation, pose tracking, Siamese network
Procedia PDF Downloads 1533449 Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation
Authors: Farzam Fatolazadeh, Kalifa Goita, Mehdi Eshagh, Shusen Wang
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy.Keywords: GRACE satellite, groundwater storage, spectral combination, terrestrial water storage
Procedia PDF Downloads 833448 Preliminary Proposal to Use Adaptive Computer Games in the Virtual Rehabilitation Therapy
Authors: Mamoun S. Ideis, Zein Salah
Abstract:
Virtual Rehabilitation (VR) refers to using Virtual Reality’s hardware and simulations as means of exercising tools to rehabilitate patients in need. These patients will undergo their treatment exercises while playing different computer games, which helps achieve greater motivation for patients undergoing their therapeutic exercises. Virtual Rehabilitation systems adopt computer games as part of the treatment therapy. In this paper, we present a preliminary proposal to using adaptive computer games in Virtual Rehabilitation therapy. We also present some tips in designing those adaptive computer games by using different machine learning algorithms in order to create a personalized experience for each patient, which in turn, increases the potential benefits of the treatment that each patient receives. Furthermore, we propose a method of comparing the results of treatment using the adaptive computer games with the results of using static and classical computer games.Keywords: virtual rehabilitation, physiotherapy, adaptive computer games, post-stroke, game design
Procedia PDF Downloads 2973447 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters
Authors: Sahar Mobeen, Anam Rafique, Irum Baig
Abstract:
Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.Keywords: LMS, LLMS, NLMS, AFA, ANLLMS
Procedia PDF Downloads 5663446 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian
Procedia PDF Downloads 330