Search results for: Big data analytics
25100 Secured Cancer Care and Cloud Services in Internet of Things /Wireless Sensor Network Based Medical Systems
Authors: Adeniyi Onasanya, Maher Elshakankiri
Abstract:
In recent years, the Internet of Things (IoT) has constituted a driving force of modern technological advancement, and it has become increasingly common as its impacts are seen in a variety of application domains, including healthcare. IoT is characterized by the interconnectivity of smart sensors, objects, devices, data, and applications. With the unprecedented use of IoT in industrial, commercial and domestic, it becomes very imperative to harness the benefits and functionalities associated with the IoT technology in (re)assessing the provision and positioning of healthcare to ensure efficient and improved healthcare delivery. In this research, we are focusing on two important services in healthcare systems, which are cancer care services and business analytics/cloud services. These services incorporate the implementation of an IoT that provides solution and framework for analyzing health data gathered from IoT through various sensor networks and other smart devices in order to improve healthcare delivery and to help health care providers in their decision-making process for enhanced and efficient cancer treatment. In addition, we discuss the wireless sensor network (WSN), WSN routing and data transmission in the healthcare environment. Finally, some operational challenges and security issues with IoT-based healthcare system are discussed.Keywords: IoT, smart health care system, business analytics, (wireless) sensor network, cancer care services, cloud services
Procedia PDF Downloads 17725099 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 1825098 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13525097 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 22825096 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 36025095 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 9425094 An Analysis of Privacy and Security for Internet of Things Applications
Authors: Dhananjay Singh, M. Abdullah-Al-Wadud
Abstract:
The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.Keywords: Internet of Things (IoT), message authentication, privacy, security
Procedia PDF Downloads 38225093 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 16525092 A Basic Metric Model: Foundation for an Evidence-Based HRM System
Authors: K. M. Anusha, R. Krishnaveni
Abstract:
Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector
Procedia PDF Downloads 40325091 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 11925090 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico
Authors: Ismene Ithai Bras-Ruiz
Abstract:
Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise
Procedia PDF Downloads 12825089 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 32625088 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 5625087 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 47925086 A Design Framework for an Open Market Platform of Enriched Card-Based Transactional Data for Big Data Analytics and Open Banking
Authors: Trevor Toy, Josef Langerman
Abstract:
Around a quarter of the world’s data is generated by financial with an estimated 708.5 billion global non-cash transactions reached between 2018 and. And with Open Banking still a rapidly developing concept within the financial industry, there is an opportunity to create a secure mechanism for connecting its stakeholders to openly, legitimately and consensually share the data required to enable it. Integration and data sharing of anonymised transactional data are still operated in silos and centralised between the large corporate entities in the ecosystem that have the resources to do so. Smaller fintechs generating data and businesses looking to consume data are largely excluded from the process. Therefore there is a growing demand for accessible transactional data for analytical purposes and also to support the rapid global adoption of Open Banking. The following research has provided a solution framework that aims to provide a secure decentralised marketplace for 1.) data providers to list their transactional data, 2.) data consumers to find and access that data, and 3.) data subjects (the individuals making the transactions that generate the data) to manage and sell the data that relates to themselves. The platform also provides an integrated system for downstream transactional-related data from merchants, enriching the data product available to build a comprehensive view of a data subject’s spending habits. A robust and sustainable data market can be developed by providing a more accessible mechanism for data producers to monetise their data investments and encouraging data subjects to share their data through the same financial incentives. At the centre of the platform is the market mechanism that connects the data providers and their data subjects to the data consumers. This core component of the platform is developed on a decentralised blockchain contract with a market layer that manages transaction, user, pricing, payment, tagging, contract, control, and lineage features that pertain to the user interactions on the platform. One of the platform’s key features is enabling the participation and management of personal data by the individuals from whom the data is being generated. This framework developed a proof-of-concept on the Etheruem blockchain base where an individual can securely manage access to their own personal data and that individual’s identifiable relationship to the card-based transaction data provided by financial institutions. This gives data consumers access to a complete view of transactional spending behaviour in correlation to key demographic information. This platform solution can ultimately support the growth, prosperity, and development of economies, businesses, communities, and individuals by providing accessible and relevant transactional data for big data analytics and open banking.Keywords: big data markets, open banking, blockchain, personal data management
Procedia PDF Downloads 7325085 Predictive Analytics of Bike Sharing Rider Parameters
Authors: Bongs Lainjo
Abstract:
The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration
Procedia PDF Downloads 13825084 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs
Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili
Abstract:
OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.Keywords: LWD measurements, caliper log, correlations, analysis
Procedia PDF Downloads 12125083 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49025082 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 8525081 Social Data Aggregator and Locator of Knowledge (STALK)
Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat
Abstract:
Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.Keywords: social network, analysis, Facebook, Linkedin, git, big data
Procedia PDF Downloads 44425080 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 3825079 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe
Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis
Abstract:
The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.Keywords: Terrain Builder, WebGL, Virtual Globe, CesiumJS, Tiled Map Service, TMS, Height-Map, Regular Grid, Geovisual Analytics, DTM
Procedia PDF Downloads 42625078 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events
Authors: Gregory D. Saxton
Abstract:
Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter
Procedia PDF Downloads 12125077 Sensing to Respond & Recover in Emergency
Authors: Alok Kumar, Raviraj Patil
Abstract:
The ability to respond to an incident of a disastrous event in a vulnerable area is very crucial an aspect of emergency management. The ability to constantly predict the likelihood of an event along with its severity in an area and react to those significant events which are likely to have a high impact allows the authorities to respond by allocating resources optimally in a timely manner. It provides for measuring, monitoring, and modeling facilities that integrate underlying systems into one solution to improve operational efficiency, planning, and coordination. We were particularly involved in this innovative incubation work on the current state of research and development in collaboration. technologies & systems for a disaster.Keywords: predictive analytics, advanced analytics, area flood likelihood model, area flood severity model, level of impact model, mortality score, economic loss score, resource allocation, crew allocation
Procedia PDF Downloads 32125076 Use of In-line Data Analytics and Empirical Model for Early Fault Detection
Authors: Hyun-Woo Cho
Abstract:
Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.Keywords: batch process, monitoring, measurement, kernel method
Procedia PDF Downloads 32325075 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability
Procedia PDF Downloads 14725074 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 7125073 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 14225072 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts
Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman
Abstract:
Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.Keywords: artificial intelligence, blockchain, data integrity, smart contracts
Procedia PDF Downloads 5525071 A Case Study: Social Network Analysis of Construction Design Teams
Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen
Abstract:
Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics
Procedia PDF Downloads 200