Search results for: white blood cell detection
8438 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 778437 Establishment and Aging Process Analysis in Dermal Fibroblast Cell Culture of Green Turtle (Chelonia mydas)
Authors: Yemima Dani Riani, Anggraini Barlian
Abstract:
Green turtle (Chelonia mydas) is one of well known long-lived turtle. Its age can reach 100 years old. Senescence in green turtle is an interesting process to study because until now no clear explanation has been established about senescence at cellular or molecular level in this species. Since 1999, green turtle announced as an endangered species. Hence, establishment of fibroblast skin cell culture of green turtle may be material for future study of senescence. One common marker used for detecting senescence is telomere shortening. Reduced telomerase activity, the reverse transcriptase enzyme which adds TTAGGG DNA sequence to telomere end, may also cause senescence. The purpose of this research are establish and identify green turtle fibroblast skin cell culture and also compare telomere length and telomerase activity from passage 5 and 14. Primary cell culture made with primary explant method then cultured in Leibovitz-15 (Sigma) supplemented by 10% Fetal Bovine Serum (Sigma) and 100 U/mL Penicillin/Streptomycin (Sigma) at 30 ± 1oC. Cells identified with Rabbit Anti-Vimentin Polyclonal Antibody (Abcam) and Goat Polyclonal Antibody (Abcam) using confocal microscope (Zeiss LSM 170). Telomere length obtained using TeloTAGGG Telomere Length Assay (Roche) while telomerase activity obtained using TeloTAGGG Telomerase PCR ElisaPlus (Roche). Primary cell culture from green turtle skin had fibroblastic morphology and immunocytochemistry test with vimentin antibody proved the culture was fibroblast cell. Measurement of telomere length and telomerase activity showed that telomere length and telomerase activity of passage 14 was greater than passage 5. However, based on morphology, green turtle fibroblast skin cell culture showed senescent morphology. Based on the analysis of telomere length and telomerase activity, suspected fibroblast skin cell culture of green turtles is not undergo aging through telomere shortening.Keywords: cell culture, chelonia mydas, telomerase, telomere, senescence
Procedia PDF Downloads 4258436 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2598435 Synthesis, Molecular Docking, and Cytotoxic Activity of Novel Triazolopyridazine Derivatives
Authors: Azza T. Tahera, Eman M. Ahmeda, Nadia A. Khalila, Yassin M. Nissanb
Abstract:
New 3-(pyridin-4-yl)-[1,2,4] triazolo [4,3-b] pyridazine derivatives 2a-i, 4a,b and 6a,b were designed, synthesized and evaluated as cytotoxic agents. All compounds were investigated for their in vitro cytotoxicity at a single dose 10-5M concentration towards 60 cancer cell lines according to USA NCI protocol. The preliminary screening results showed that the majority of tested compounds exhibited remarkable activity against SR (leukemia) cell panel. Molecular docking for all synthesized compounds was performed on the active site of c-Met kinase. The most active compounds, 2f and 4a were further evaluated at a seven dose level screening and their IC50 as a c-Met kinase inhibitors were determined in vitro.Keywords: triazolopyridazines, pyridazines, cytotoxic activity, cell panel
Procedia PDF Downloads 5378434 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago
Authors: Nicole Ramlachan, Samuel Mark West
Abstract:
Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics
Procedia PDF Downloads 1618433 A Case Study: Effect of Low Carbs High Fats Diet (Also Known as LCHF Diet) Combined with Fried Foods in Extra Virgin Olive Oil in Patient with Type 2 Diabetes and Central Obesity
Authors: Cristian Baldini
Abstract:
‘Diabesity’ is a term for diabetes occurring in the context of obesity. The positive effect of LCHF diets (low-carb, high-fat diets) is well documented: LCHF diets are at least as effective as other dietary strategies for reducing body weight, improving glycaemic control, and reducing both hyperinsulinaemia and blood glucose (reduction of HbA1c) in type 2 diabetes and have unique positive effects on blood lipid concentrations and cardiovascular risk factors. Also, in obese insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal. This case study shows that if combined, both dietary strategies produce a strong effect on blood glucose, resulting in a “forced” reduction of exogenous insulin injection to avoid the problem of hypoglycaemia. Blood tests after three months of this dietary treatment show how HbA1c, triglycerides, and blood lipid profile (LDL, HDL, Total Cholesterol) are improved despite the reduction of exogenous insulin injection of 80% with a parallel body weight decrease of 15%. For continuous glucose monitoring (CGM), the patient used FreeStyle Libre before and after the dietary treatment. In order to check general body functions and glycosuria, the patient used the urine test Multistix 10 SG Siemens.Keywords: diabetes, obesity, diabesity, fat, fried foods
Procedia PDF Downloads 768432 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 2118431 Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery
Authors: Irshad U. Khan, Tanmay Paul, Murali Mohan Seepana
Abstract:
This paper presents a study on synthesizing and characterizing a Copper oxide doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by linear sweep voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, which reflects improved cell performance.Keywords: ECSA, electrocatalyst, energy storage, Tafel
Procedia PDF Downloads 918430 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2878429 Comparison of Performance of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies Prepared from 10 and 15-Micron Proton Exchange Membranes
Authors: Yingjeng James Li, Chiao-Chih Hu
Abstract:
Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC) applications were prepared by using 10 and 15 um PEMs. Except for different membrane thicknesses, these MEAs were prepared by the same conditions. They were prepared by using catalyst coated membrane (CCM) process. The catalyst employed is 40% Pt/C, and the Pt loading is 0.5mg/cm² for the sum of anode and cathode. Active area of the MEAs employed in this study is 5cm*5cm=25cm². In polarization measurements, the flow rates were always set at 1.2 stoic for anode and 3.0 stoic for cathode. The outlets were in open-end mode. The flow filed is tri-serpentine design. The cell temperatures and the humidification conditions were varied for the purpose of MEA performance observations. It was found that the performance of these two types of MEAs is about the same at fully or partially humidified operation conditions; however, 10um MEA exhibits higher current density in dry or low humidified conditions. For example, at 70C cell, 100% RH, and 0.6V condition, both MEAs have similar current density which is 1320 and 1342mA/cm² for 15um and 10um product, respectively. However, when in operation without external humidification, 10um MEA can produce 1085mA/cm²; whereas 15um MEA produces only 720mA/cm².Keywords: fuel cell, membrane electrode assembly, PEFC, PEMFC, proton exchange membrane
Procedia PDF Downloads 2418428 Assessment of a Rapid Detection Sensor of Faecal Pollution in Freshwater
Authors: Ciprian Briciu-Burghina, Brendan Heery, Dermot Brabazon, Fiona Regan
Abstract:
Good quality bathing water is a highly desirable natural resource which can provide major economic, social, and environmental benefits. Both in Ireland and Europe, such water bodies are managed under the European Directive for the management of bathing water quality (BWD). The BWD aims mainly: (i) to improve health protection for bathers by introducing stricter standards for faecal pollution assessment (E. coli, enterococci), (ii) to establish a more pro-active approach to the assessment of possible pollution risks and the management of bathing waters, and (iii) to increase public involvement and dissemination of information to the general public. Standard methods for E. coli and enterococci quantification rely on cultivation of the target organism which requires long incubation periods (from 18h to a few days). This is not ideal when immediate action is required for risk mitigation. Municipalities that oversee the bathing water quality and deploy appropriate signage have to wait for laboratory results. During this time, bathers can be exposed to pollution events and health risks. Although forecasting tools exist, they are site specific and as consequence extensive historical data is required to be effective. Another approach for early detection of faecal pollution is the use of marker enzymes. β-glucuronidase (GUS) is a widely accepted biomarker for E. coli detection in microbiological water quality control. GUS assay is particularly attractive as they are rapid, less than 4 h, easy to perform and they do not require specialised training. A method for on-site detection of GUS from environmental samples in less than 75 min was previously demonstrated. In this study, the capability of ColiSense as an early warning system for faecal pollution in freshwater is assessed. The system successfully detected GUS activity in all of the 45 freshwater samples tested. GUS activity was found to correlate linearly with E. coli (r2=0.53, N=45, p < 0.001) and enterococci (r2=0.66, N=45, p < 0.001) Although GUS is a marker for E. coli, a better correlation was obtained for enterococci. For this study water samples were collected from 5 rivers in the Dublin area over 1 month. This suggests a high diversity of pollution sources (agricultural, industrial, etc) as well as point and diffuse pollution sources were captured in the sample size. Such variety in the source of E. coli can account for different GUS activities/culturable cell and different ratios of viable but not culturable to viable culturable bacteria. A previously developed protocol for the recovery and detection of E. coli was coupled with a miniaturised fluorometer (ColiSense) and the system was assessed for the rapid detection FIB in freshwater samples. Further work will be carried out to evaluate the system’s performance on seawater samples.Keywords: faecal pollution, β-glucuronidase (GUS), bathing water, E. coli
Procedia PDF Downloads 2838427 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 4348426 Release Response of Black Spruce and White Spruce Following Overstory Lodgepole Pine Mortality Due to Mountain Pine Beetle Attack
Authors: F. O. Oboite, P. G. Comeau
Abstract:
Advance regeneration is present in many lodgepole pine stands in Alberta. When the overstory pine canopy is killed by Mountain Pine Beetle (MPB) the growth of this advance is likely to increase. Understanding the growth response of these understory tree species is needed to improve mid-term timber supply projections and management decisions. To quantify the growth (diameter, height, height/diameter ratio) responses of black spruce and white spruce to lodgepole pine mortality, sample trees of black and white spruce advance regeneration were selected from 7 lodgepole pine dominated stands (5 attacked; 2 control) in the Foothills Region of western Alberta. Measurements were collected 7-8 years after MPB attack across a wide range of spruce height and stand densities. Analysis was done using mixed model linear regression. Result indicates that there was an increase in both diameter and height growth after MPB attack; however, this increase in growth was delayed for about four years. Both spruce species had similar height response and their height/diameter ratio decreased after release, partly as a result of increased understory light associated with loss of needles in the pine canopy. In addition, the diameter and height growth responses of both spruce species were strongly related to density, prerelease growth and initial size.Keywords: mountain pine beetle, forest regeneration, lodgepole pine, growth response
Procedia PDF Downloads 3768425 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 788424 Facility Detection from Image Using Mathematical Morphology
Authors: In-Geun Lim, Sung-Woong Ra
Abstract:
As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.Keywords: facility detection, satellite image, object, mathematical morphology
Procedia PDF Downloads 3828423 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 4068422 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms
Authors: Yaping Zhao, Yimin Zhang
Abstract:
In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.Keywords: random vibration, cantilever beam, mean square response, white noise
Procedia PDF Downloads 3848421 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 1048420 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 148419 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1048418 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1708417 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1188416 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications
Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir
Abstract:
In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam
Procedia PDF Downloads 2928415 Investigation of the Impact of Family Status and Blood Group on Individuals’ Addiction
Authors: Masoud Abbasalipour
Abstract:
In this study, the impact of family status on individuals, involving factors such as parents' literacy level, family size, individuals' blood group, and susceptibility to addiction, was investigated. Statistical tests were employed to scrutinize the relationships among these specified factors. The statistical population of the study consisted of 338 samples divided into two groups: individuals with addiction and those without addiction in the city of Amol. The addicted group was selected from individuals visiting the substance abuse treatment center in Amol, and the non-addicted group was randomly selected from individuals in urban and rural areas. The Chi-square test was used to examine the presence or absence of relationships among the variables, and Kramer's V test was employed to determine the strength of the relationship between them. Excel software facilitated the initial entry of data, and SPSS software was utilized for the desired statistical tests. The research results indicated a significant relationship between the variable of parents' education level and individuals' addiction. The analysis showed that the education level of their parents was significantly lower compared to non-addicted individuals. However, the variables of the number of family members and blood group did not significantly impact individuals' susceptibility to addiction.Keywords: addiction, blood group, parents' literacy level, family status
Procedia PDF Downloads 698414 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 1168413 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice
Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes
Abstract:
Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics
Procedia PDF Downloads 1608412 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line
Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili
Abstract:
Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma
Procedia PDF Downloads 1568411 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)
Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud
Abstract:
Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.Keywords: electric vehicle, redox flow battery, packaging, vanadium
Procedia PDF Downloads 4348410 Field Evaluation of Different Aubergine Cultivars against Infestation of Brinjal Shoot and Fruit Borer
Authors: Ajmal Khan Kassi, Humayun Javed, Muhammad Asif Aziz
Abstract:
Response of different aubergine cultivars against Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee.) was evaluated at research farm of PMAS, Arid Agriculture University, Rawalpindi, during 2013. Field trials were conducted in randomized completed block design with four replications for the screening of five cultivars of Brinjal (Solanum melongena L) (Short Purpal, Singhnath 666, Brinjal long 6275, Round Brinjal 86602, Round Egg Plant White). Cultivar Round White Brinjal showed maximum fruit infestation (54.44%) followed by Singhnath 666 (53.19%), while minimum fruit infestation was observed in Round Brinjal 86602 (42.39%). Cultivar Short Purpal showed maximum larval population (0.43) followed by Round White Brinjal (0.39), while the minimum larval population was observed in Round Brinjal 86602 with (0.27). It was observed that Round Brinjal 86602 cultivar showed comparatively minimum (L. orbonalis) larval population per leaf. The correlation of Brinjal fruit infestation and larval population of (L. orbonalis) with the different environmental factors showed that, the average relative humidity was positively and significantly correlated with fruit infestation on cultivars average precipitation showed positive but non- significant correlation on all the cultivars except Singhnath 666 with the value of (0.79) which was positive and significant. The average temperature showed non-significant and negative correlation with Brinjal long 6275, Round Brinjal 86602 and Singhnath 666, but significant negative correlation with Short Purpal and Round White Brinjal. Maximum temperature also showed the significant and negative correlation on all the five Brinjal cultivars which were significant and highly significant. Minimum temperature showed negative correlation and not significant correlation with all the cultivars. Consequently, based on the (L. orbonalis) larval density and Brinjal fruit infestation, the Round Brinjal 86602 proved least susceptible and Short Purpal highly susceptible cultivar.Keywords: evaluation, Brinjal (Solanum melongena L), Cultivars, L. orbonalis
Procedia PDF Downloads 1968409 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel
Authors: H. Bakhshi, E. Khayyamian
Abstract:
Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel
Procedia PDF Downloads 451