Search results for: urea deep placement
1601 Research on Ecological Space Improvement Strategy from the Perspective of Urban Double Reform
Authors: Sisi Xia, Dezhuan Tao
Abstract:
Urban Double Reform is an effective means to improve the quality of ecological space, based on improving the living environment and urban functions and promoting the organic integration of the city and nature. This paper takes the design of Qinyang Wetland Park in Jiaozuo, Henan Province, as an example, attempting to closely link the ecological restoration of wetland with the urban culture and to extend the urban spirit of the ancient county of Qinyang while purifying the ecological water system. This design uses ecological technology to repair underwater forests and underwater turf, rapidly improving the quality of urban water without biological side effects. The ecological grass slope is used to create multiple bank forms, combining with a number of hydrophilic platforms to provide a good view of the public. Through the placement of ecological education bases, urban cultural exhibition halls, and other means, the cultural value of wetland parks will be enhanced, and the citizens will return to nature and experience the ecology and appreciate the charm of urban culture in the ecological space. Repair the ecosystem, sculpt the urban culture, let the public return to nature, experience the ecology, and experience the charm of urban culture in the ecological space.Keywords: urban double reform, ecological space, improvement strategy, wetland park design
Procedia PDF Downloads 2381600 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 761599 Astronomical Object Classification
Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan
Abstract:
We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis
Procedia PDF Downloads 781598 Soybean Based Farming System Assessment in Pasuruan East Java Indonesia
Authors: Mohammad Saeri, Noor Rizkiyah, Kambang Vetrani Asie, Titin Apung Atikah
Abstract:
The study aims to assess efficient specific-location soybean farming technology assembly by assisting the farmers in applying the suggested technology. Superimposed trial was conducted to know NPK fertilizer effect toward soybean growth and yield and soybean improved variety test for the dissemination of improved variety. The assessment was conducted at the farmers group of Sumber Rejeki, Kepulungan Village, Gempol Sub-district, Pasuruan Regency as the soybean central at Pasuruan area. The number of farmers involved in the study was 38 people with 25 ha soybean area. This study was held from July to October 2012. The recommended technology package agreed at the socialization time and used in this research were: using Argomulyo variety seeds of 40 kg/ha, planting by drilling, planting by distance of 40x10 cm, deciding the seeds amount of 2-3 seeds per hole, and giving fertilization based on recommendation of East Java AIAT of 50 kg Urea, 100 kg SP-36 and 50 kg KCl. Farmers around the research location were used as control group. Assessment on soybean farming system was considered effective because it could increase the production up to 38%. The farming analysis showed that the result collaborator farmers gained were positively higher than non-collaborator farmers with RC ratio of 2.03 and 1.54, respectively. Argomulyo variety has the prospect to be developed due to the high yield of about 2 tons/ha and the larger seeds. The NPK fertilization test at the soybean plants showed that the fertilization had minor effect on the yield.Keywords: farming system, soybean, variety, location specific
Procedia PDF Downloads 1781597 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1021596 Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)
Authors: Mohammad Mehdi Pardsouie, Mehdi Mokhberi, Seyed Mohammad Ali Zomorodian, Seyed Alireza Nasehi
Abstract:
One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants.Keywords: partial penetration, surcharge preloading, excess pore water pressure, Bangkok test embankments
Procedia PDF Downloads 2071595 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique
Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele
Abstract:
The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties
Procedia PDF Downloads 1201594 Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures
Authors: Karl-Erich Lindenschmidt, Apurba Das, Joel Trudell, Keanne Russell
Abstract:
In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada)Keywords: ice jam, flood hazard, flood risk river ice modelling, flood risk
Procedia PDF Downloads 1851593 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 2601592 Students With Special Educational Needs in Regular Classrooms and their Peer Effects on Learning Achievement
Authors: José María Renteria, Vania Salas
Abstract:
This study explores the impact of inclusive education on the educational outcomes of students without Special Educational Needs (non-SEN) in Peru, utilizing official Ministry of Education data and implementing cross-sectional regression analyses. Inclusive education is a complex issue that, without appropriate adaptations and comprehensive understanding, can present substantial challenges to the educational community. While prior research from developed nations offers diverse perspectives on the effects of inclusive education on non-SEN students, limited evidence exists regarding its impact in developing countries. Our study addresses this gap by examining inclusive education in Peru and its effects on non-SEN students, thereby contributing to the existing literature. the findings reveal that, on average, the presence of SEN students in regular classrooms does not significantly affect their non-SEN counterparts. However, we uncover heterogeneous effects contingent on the specific type of SEN and students’ academic placement. These results emphasize the importance of targeted resources, specialized teachers, and parental involvement in facilitating successful inclusive education, particularly for specific SEN types and students positioned at the lower end of the academic achievement spectrum. In summary, this study underscores the need for tailored strategies and additional resources to foster the success of inclusive education and calls for further research in this field to expand our understanding and enhance educational policy.Keywords: inclusive education, special educational needs, learning achievement, Peru, Basic education
Procedia PDF Downloads 811591 The Impact of Access to Microcredit Programme on Women Empowerment: A Case Study of Cowries Microfinance Bank in Lagos State, Nigeria
Authors: Adijat Olubukola Olateju
Abstract:
Women empowerment is an essential developmental tool in every economy especially in less developed countries; as it helps to enhance women's socio-economic well-being. Some empirical evidence has shown that microcredit has been an effective tool in enhancing women empowerment, especially in developing countries. This paper therefore, investigates the impact of microcredit programme on women empowerment in Lagos State, Nigeria. The study used Cowries Microfinance Bank (CMB) as a case study bank, and a total of 359 women entrepreneurs were selected by simple random sampling technique from the list of Cowries Microfinance Bank. Selection bias which could arise from non-random selection of participants or non-random placement of programme, was adjusted for by dividing the data into participant women entrepreneurs and non-participant women entrepreneurs. The data were analyzed with a Propensity Score Matching (PSM) technique. The result of the Average Treatment Effect on the Treated (ATT) obtained from the PSM indicates that the credit programme has a significant effect on the empowerment of women in the study area. It is therefore, recommended that microfinance banks should be encouraged to give loan to women and for more impact of the loan to be felt by the beneficiaries the loan programme should be complemented with other programmes such as training, grant, and periodic monitoring of programme should be encouraged.Keywords: empowerment, microcredit, socio-economic wellbeing, development
Procedia PDF Downloads 3041590 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders
Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari
Abstract:
There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame
Procedia PDF Downloads 2321589 Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management
Authors: Ebrahim Izadi-Darbandi
Abstract:
In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements.Keywords: competition, wheat yield, fertilizer management, biomass
Procedia PDF Downloads 3681588 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 741587 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems
Authors: Jiradeach Kalayaruan, Tosawat Seetawan
Abstract:
This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy
Procedia PDF Downloads 3441586 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners
Authors: Michael McMahon
Abstract:
The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.Keywords: multimedia learning, e-learning, design for learning, ICT
Procedia PDF Downloads 1031585 BERT-Based Chinese Coreference Resolution
Authors: Li Xiaoge, Wang Chaodong
Abstract:
We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.Keywords: BERT, coreference resolution, deep learning, nature language processing
Procedia PDF Downloads 2161584 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)
Procedia PDF Downloads 3011583 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye
Authors: Rahul Jarariya
Abstract:
The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21
Procedia PDF Downloads 1831582 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors
Authors: Gajanan M. Sonwane
Abstract:
The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking
Procedia PDF Downloads 1401581 Effects of a Bacteria-Based Probiotic on Subpopulations of Peripheral Leukocytes and Their Interleukin mRNA Expression in Calves
Authors: Abdul Qadir Qadis, Satoru Goya, Minoru Yatsu, Yu-uki Yoshida, Toshihiro Ichijo, Shigeru Sato
Abstract:
Bacterial probiotics are known to modulate the gut-associated lymphoid and epithelial tissue response to enhance the activities of intestinal and systemic immune system in human and animals. In cattle, the immune-stimulatory effects of probiotics have been evaluated during intestinal disorders. To investigate the effects of probiotic on the function of peripheral blood mononuclear cells, eight healthy Holstein calves (10 ± 3 weeks) were assigned to a 4 × 2 experimental design. The probiotic, consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum, was administered orally at 3.0 g/100 kg body weight to calves once daily for 5 consecutive days. Calves given no probiotic served as the control. In the treatment group, increases in numbers of CD282+ monocytes, CD3+ T-cells and CD4+, CD8+ and WC1+ γδ T- cell subsets were noted on day 7 post-placement compared to pre-dose day and the control group. Expression of interleukin-6, interferon-gamma and tumor necrosis factor-alpha was elevated in peripheral leukocytes on days 7 and 14. These results suggest that peripheral blood leukocytes in healthy calves may be stimulated via the gastrointestinal microbiota, which was increased by the oral probiotic treatment. The 5-day repeated administration of a bacterial probiotic may enhance cellular immune function in weaned calves.Keywords: bacterial-probiotic, calf, interleukin, leukocyte
Procedia PDF Downloads 6591580 Fatigue Analysis of Spread Mooring Line
Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
Abstract:
Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics
Procedia PDF Downloads 3341579 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1561578 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3391577 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman
Authors: Mahmoud Mohamed Emam
Abstract:
In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.Keywords: learning disabilities, phonemic awareness, third graders, Oman
Procedia PDF Downloads 6411576 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location
Procedia PDF Downloads 4841575 Automatic Checkpoint System Using Face and Card Information
Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn
Abstract:
In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.Keywords: face comparison, card recognition, OCR, checkpoint system, authentication
Procedia PDF Downloads 3211574 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material
Authors: Mohammad Khan, Arnaud Castel
Abstract:
Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking
Procedia PDF Downloads 1851573 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch
Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis
Abstract:
Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization
Procedia PDF Downloads 1871572 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway
Authors: Surendra Choudhary, Sapan Tiwari
Abstract:
The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.Keywords: geometry, maneuverability, terrain, trajectory, VBOX
Procedia PDF Downloads 143