Search results for: solar radiation pressure
5373 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper
Authors: Hossein Ramezani Ali-Akbari
Abstract:
This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism
Procedia PDF Downloads 3255372 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling
Authors: Xue Ma, Yang Fu, Dangyuan Lei
Abstract:
Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling
Procedia PDF Downloads 865371 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia
Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas
Abstract:
The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.Keywords: time series, global solar irradiance, imputed data, energy complementarity
Procedia PDF Downloads 715370 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 1025369 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel
Authors: Gurjit Singh, Gurmail Singh
Abstract:
The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel
Procedia PDF Downloads 905368 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 735367 Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation
Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo
Abstract:
Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.Keywords: ultraviolet rays, lymphocytes, chromosome breakpoints, photodamage
Procedia PDF Downloads 4285366 Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes
Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo
Abstract:
Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.Keywords: chromosome breakpoints, lymphocytes, photodamage, ultraviolet rays
Procedia PDF Downloads 5785365 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis
Authors: Ganbat Danaa, Chuluundorj Puntsag
Abstract:
The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability
Procedia PDF Downloads 675364 Designing Dibenzosilole and Methyl Carbazole Based Donor Materials with Favourable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells
Abstract:
Five new Acceptor-Donor-Acceptor (A-D-A) type small donor molecules (M1-M5) namely; dimethyl cyanoacetate terthiophene di(methylthiophene) dibenzosilole (DMCAO3TBS) (M1), dimelononitrile terthiophene di(methylthiophene) dibenzosilole (DMCNTBS) (M2), dimethyl rhodanine terthiophene di(methylthiophene) dibenzosilole (DMRTBS) (M3), dimelanonitrile terthiophene di(methylthiophene) methyl fluorene (DMCNTF) (M4) and dimethyl rhodanine terthiophene di(methylthiophene) methyl fluorine (DMRTF) (M5) were designed and theoretically explored their electronic, photophysical and geometrical properties via DFT best functional MPW1PW91/6-311G (d,p) level of theory with respect to reference molecules dioctyl cyanoacetate terthiophene di(octylthiophene) dioctylfluorene (DCAO3TF) (Ra) and dioctyl cyanoacetate terthiophene di(octylthiophene) octylcarbazole (DCAO3TCz) (Rb). Among the designed donor molecules (M1-M5), M2 and M4 represented lowest band gap value (2.480 eV and 2.47 eV) with distinctive broad absorption peak at 598 and 601 nm in chloroform due to the presence of stronger electron withdrawing acceptor molecule which pulls the λmax value towards red shift. Theoretically estimated reorganization energies of these molecules recommended excellent property of charge mobility. The designed donor molecules M1-M5, demonstrated lower λe value with reference to their λh, showing that these molecules could be ideal candidates for the transfer of electron with and M2, M4 are best among these as champion molecules with having lowest λe (0.006 D and 0.005 D respectively). Additionally, the Voc of M2 and M4 are 2.01 eV and 1.85 eV respectively with reference respect to PCBM. Thus, our present investigation suggested that our designed donor molecules (M1-M5) are suitable candidates for the solar cell and proposed for high and better performance for the small molecule based solar cell devices.Keywords: dibenzisilol, donor materials, hole mobility, organic solar cells
Procedia PDF Downloads 2025363 Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa
Authors: Thizwilondi Madzaga, Jabu Tsakani Mabunda, Takalani Tshitangano
Abstract:
Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness.Keywords: academic staff, awareness, control, hypertension, prevalence
Procedia PDF Downloads 3365362 Effect of Ti+ Irradiation on the Photoluminescence of TiO2 Nanofibers
Authors: L. Chetibi, D. Hamana, T. O. Busko, M. P. Kulish, S. Achour
Abstract:
TiO2 nanostructures have attracted much attention due to their optical, dielectric and photocatalytic properties as well as applications including optical coating, photocatalysis and photoelectrochemical solar cells. This work aims to prepare TiO2 nanofibers (NFs) on titanium substrate (Ti) by in situ oxidation of Ti foils in a mixture solution of concentrated H2O2 and NaOH followed by proton exchange and calcinations. Scanning Electron microscopy (SEM) revealed an obvious network of TiO2 nanofibers. The photoluminescence (PL) spectra of these nanostructures revealed a broad intense band in the visible light range with a reduced near edge band emission. The PL bands in the visible region, mainly, results from surface oxygen vacancies and others defects. After irradiation with Ti+ ions (the irradiation energy was E = 140 keV with doses of 1013 ions/cm2), the intensity of the PL spectrum decreased as a consequence of the radiation treatment. The irradiation with Ti+ leads to a reduction of defects and generation of non irradiative defects near to the level of the conduction band as evidenced by the PL results. On the other hand, reducing the surface defects on TiO2 nanostructures may improve photocatalytic and optoelectronic properties of this nanostructure.Keywords: TiO2, nanofibers, photoluminescence, irradiation
Procedia PDF Downloads 2445361 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature
Authors: J. O. Bodunrin, S. J. Moloi
Abstract:
This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD
Procedia PDF Downloads 1325360 Outstanding Lubricant Using Fluorographene as an Extreme Pressure Additive
Authors: Adriana Hernandez-Martinez, Edgar D. Ramon-Raygoza
Abstract:
Currently, there has been a great interest, during the last years, on graphene due to its lubricant properties on friction and antiwear processes. Likewise, fluorographene has also been gaining renown due to its excellent chemical and physical properties which have been mostly applied in the electronics industry. Nevertheless, its tribological properties haven’t been analyzed thoroughly. In this paper, fluorographene was examined as an extreme pressure additive and the nano lubricant made with a cutting fluid and fluorographene in the range of 0.01-0.5% wt, which proved to withstand 53.78% more pounds than the conventional product and 7.12% more than the nano lubricant with graphene in a range between 0.01-0.5% wt. Said extreme pressure test was carried out with a Pin and Vee Block Tribometer following an ASTM D3233A test. The fluorographene used has a low C/F ratio, which reflects a greater presence of atomic fluorine and its low oxygen percentage, supports the substitution of oxygen-containing groups by fluorine. XPS Spectra shows high atomic fluorine content of 56.12%, and SEM analysis details the formation of long and clear crystalline structures, in the fluorographene used.Keywords: extreme pressure additive, fluorographene, nanofluids, nanolubricant
Procedia PDF Downloads 1255359 Device for Reversible Hydrogen Isotope Storage with Aluminum Oxide Ceramic Case
Authors: Igor P. Maximkin, Arkady A. Yukhimchuk, Victor V. Baluev, Igor L. Malkov, Rafael K. Musyaev, Damir T. Sitdikov, Alexey V. Buchirin, Vasily V. Tikhonov
Abstract:
Minimization of tritium diffusion leakage when developing devices handling tritium-containing media is key problems whose solution will at least allow essential enhancement of radiation safety and minimization of diffusion losses of expensive tritium. One of the ways to solve this problem is to use Al₂O₃ high-strength non-porous ceramics as a structural material of the bed body. This alumina ceramics offers high strength characteristics, but its main advantages are low hydrogen permeability (as against the used structural material) and high dielectric properties. The latter enables direct induction heating of an hydride-forming metal without essential heating of the pressure and containment vessel. The use of alumina ceramics and induction heating allows: - essential reduction of tritium extraction time; - several orders reduction of tritium diffusion leakage; - more complete extraction of tritium from metal hydrides due to its higher heating up to melting in the event of final disposal of the device. The paper presents computational and experimental results for the tritium bed designed to absorb 6 liters of tritium. Titanium was used as hydrogen isotope sorbent. Results of hydrogen realize kinetic from hydride-forming metal, strength and cyclic service life tests are reported. Recommendations are also provided for the practical use of the given bed type.Keywords: aluminum oxide ceramic, hydrogen pressure, hydrogen isotope storage, titanium hydride
Procedia PDF Downloads 4075358 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect
Authors: Li Chen
Abstract:
For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise
Procedia PDF Downloads 3365357 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 945356 Sliding Mode Control of a Photovoltaic Grid-Connected System with Active and Reactive Power Control
Authors: M. Doumi, K. Tahir, A. Miloudi, A. G. Aissaoui, C. Belfedal, S. Tahir
Abstract:
This paper presents a three-phase grid-connected photovoltaic generation system with unity power factor for any situation of solar radiation based on voltage-oriented control (VOC). An input voltage clamping technique is proposed to control the power between the grid and photovoltaic system, where it is intended to achieve the maximum power point operation. This method uses a Perturb and Observe (P&O) controller. The main objective of this work is to compare the energy production unit performances by the use of two types of controllers (namely, classical PI and Sliding Mode (SM) Controllers) for the grid inverter control. The proposed control has a hierarchical structure with a grid side control level to regulate the power (PQ) and the current injected to the grid and to obtain a common DC voltage constant. To show the effectiveness of both control methods performances analysis of the system are analyzed and compared by simulation and results included in this paper.Keywords: grid connected photovoltaic, MPPT, inverter control, classical PI, sliding mode, DC voltage constant, voltage-oriented control, VOC
Procedia PDF Downloads 6095355 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications
Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan
Abstract:
Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell
Procedia PDF Downloads 1465354 Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications
Authors: Ghada Ben Hamad, Zohir Younsi, Fabien Salaun, Hassane Naji, Noureddine Lebaz
Abstract:
The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM).Keywords: modified hummers method, graphite oxide, oxidation degree, solar energy storage
Procedia PDF Downloads 1185353 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils
Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh
Abstract:
Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process
Procedia PDF Downloads 745352 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens
Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini
Abstract:
A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery
Procedia PDF Downloads 2945351 A Model of a Non-expanding Universe
Authors: Yongbai Yin
Abstract:
We propose a non-expanding model of the universe based on the non-changing fine-structure constant and Einstein’s space-time relativity theory. This model consistently explains the Redshift, the ‘expanding’ and the age of the universe without introducing the singularity and inflationary issues that occurred in the ‘Big Bang’ model. It also offers an interpretation of the unexpected ‘accelerated expanding’ universe and the origin of the mystery of ‘Dark matter’. It predicts that the universe began with a ‘cold and peaceful’ rather than ‘extremely hot’ stage which is used to explain consistently the microwave background radiation. It predicts mathematically that galaxies could end in blackholes because blackholes should have the same environmental conditions as those at the beginning of the universe in this model, paving the way to offer a model of the cyclic universes without violating the first law of thermodynamics.Keywords: big bang, accelerated expanding universe, dark matters, blackholes, microwave background radiation, universe modelling
Procedia PDF Downloads 105350 Sol–Gel Derived Durable Antireflective Multilayered TiO2/SiO2 Coating for Solar Glass
Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
In this paper, multilayer TiO2-SiO2 containing PDMS coatings were produced. Also, the effect of triton as a porosity maker on single and multilayer silica and titania coatings was investigated. The results showed stability of optical triton containing coatings disappears with time. Because of the presence of triton in solution improve the wetting properties of PDMS sols and helps lead to instability by water absorption. However; without triton, antireflective multilayer coatings with high transmittance 98% and excellent durability were prepared by sol–gel process using poly dimethyl siloxane as additive. This coating can be used as well as in solar applications.Keywords: sol-gel, thin film, anti-reflective, titania-silica, PDMS, triton
Procedia PDF Downloads 4095349 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 95348 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel
Authors: Binyam Teferi
Abstract:
In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction
Procedia PDF Downloads 915347 Effect of Whole Body Vibration on Posture Stability and Planter Pressure in Patients with Diabetic Neuropathy
Authors: Azza M. Atya, Mahmoud M. Nasser
Abstract:
Background/ /Significance: Peripheral neuropathy is one of the long term serious complications of diabetes, which may attribute to postural instability and alteration of planter pressure. Whole body vibration (WBV) is a somatosensory stimulation type of exercise that has been emerged in sport training and rehabilitation of neuromuscular disorders. Purpose: The aim of this study was to investigate the effect of whole Body Vibration on antroposterior (AP), mediolateral (ML) posture stability and planter foot pressure in patients with diabetic neuropathy. Subjects: forty diabetic patients with moderate peripheral neuropathy aged from 35 to 50 years, were randomly assigned to WBV group (n=20) and control group (n=20). Methods and Materials: the WBV intervention consisted of three session weekly for 8 weeks (frequency 20 Hz, peak-to peak displacement 4mm, acceleration 3.5 g). Biodex balance system was used for postural stability assessment and the foot scan plate was used to measure the mean peak pressure under the first and lesser metatarsals. The main Outcome measures were antroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI),and mean peak foot pressure. Analyses: Statistical analysis was performed using the SPSS software package (SPSS for Windows Release 18.0). T-test was used to compare between the pre- and post-treatment values between and within groups. Results: For the 40 study participants (18male and 22 females) there were no between-group differences at baseline. At the end of 8 weeks, Subjects in WBV group experienced significant increase in postural stability with a reduction of mean peak of planter foot pressure (P<0.05) compared with the control group. Conclusion: The result suggests that WBV is an effective therapeutic modality for increasing postural stability and reducing planter pressure in patients with diabetic neuropathy.Keywords: whole body vibration, diabetic neuropathy, posture stability, foot pressure
Procedia PDF Downloads 3835346 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 3745345 A Compact Wearable Slot Antenna for LTE and WLAN Applications
Authors: Haider K. Raad
Abstract:
In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.Keywords: wearable electronics, slot Antenna, LTE, WLAN
Procedia PDF Downloads 2345344 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics
Authors: Arya Pirooz
Abstract:
Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.Keywords: injection, OM-457 engine, nozzle geometry, atomization
Procedia PDF Downloads 502