Search results for: respond surface methodology
11036 Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation
Authors: Irsha Dhotre
Abstract:
Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil.Keywords: Box–Behnken design, Cymbopogon citratus, hydro distillation, microwave-oven, response surface methodology
Procedia PDF Downloads 9211035 Application of Watershed Modeling System for Urbanization Management in Tabuk Area, Saudi Arabia
Authors: Abd-Alrahman Embaby, Ayman Abu Halawa, Medhat Ramadan
Abstract:
The infiltrated water into the subsurface activates expansive soil in localized manner, leading to the differential heaving and destructive of the construction. The Watershed Modeling System (WMS) and Hydrologic Engineering Center (HEC-1) are used to delineate and identify the drainage system and basin morphometry in Tabuk area, where flash floods and accumulation of water may take place. Eight drainage basins effect on Tabuk city. Three of them are expected to be high. The flash floods and surface runoff behavior in these basins are important for any protection projects. It was found that the risky areas that contain Tabuk shale could be expanded when exposed to flash floods and/or surface runoff. The resident neighborhoods in the middle of Tabuk city and affected by surface runoff of the tributaries of the basin of Wadi Abu Nishayfah, Na'am and Atanah outlet, represent high-risk zones. These high-risk neighborhoods are Al Qadsiyah, Al Maseif, Arrwdah, Al Nakhil and Al Rajhi. It can be avoided new constructions on these districts. The low or very low-risk zones include the western and the eastern districts. The western side of the city is lying in the upstream of the small basin. It is suitable for a future urban extension. The direction of surface runoff flow or storm water drain discharge should be away from Tabuk city. The quicker the water can flow out, the better it is.Keywords: digital elevation model (DEM), flash floods, Saudi Arabia, Tabuk City, watershed modeling system (WMS)
Procedia PDF Downloads 26311034 Effects of Surface Textures and Chemistries on Wettability
Authors: Dipti Raj, Himanshu Mishra
Abstract:
Wetting of a solid surface by a liquid is an extremely common yet subtle phenomenon in natural and applied sciences. A clear understanding of both short and long-term wetting behaviors of surfaces is essential for creating robust anti-biofouling coatings, non-wetting textiles, non-fogging mirrors, and preventive linings against dirt and icing. In this study, silica beads (diameter, D ≈ 100 μm) functionalized using different silane reagents were employed to modify the wetting characteristics of smooth polydimethylsiloxane (PDMS) surfaces. Resulting composite surfaces were found to be super-hydrophobic, i.e. contact angle of water,Keywords: contact angle, Cassie-Baxter, PDMS, silica, texture, wetting
Procedia PDF Downloads 25211033 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines
Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh
Abstract:
The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method
Procedia PDF Downloads 26511032 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles
Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss
Abstract:
Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma
Procedia PDF Downloads 53711031 Investigation of Doping Effects on Nonradiative Recombination Parameters in Bulk GaAs
Authors: Soufiene Ilahi
Abstract:
We have used Photothermal deflection spectroscopy PTD to investigate the impact of doping on electronics properties of bulk. Then, the extraction of these parameters is performed by fitting the theoretical curves to the experimental PTD ones. We have remarked that electron mobility in p type C-doped GaAs is about 300 cm2/V·s. Accordinagly, the diffusion length of minority carrier lifetime is equal to 5 (± 7%), 5 (± 4,4%) and 1.42 µm (± 7,2 %) for the Cr, C and Si doped GaAs respectively. Surface recombination velocity varies randomly that can be found around of 7942 m/s, 100 m/s and 153 m/s GaAs doped Si, Cr, C, respectively.Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs
Procedia PDF Downloads 6911030 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: big data, social network analysis, text mining, topic modeling
Procedia PDF Downloads 29311029 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 24911028 A Literature Review of Emotional Labor and Non-Task Behavior
Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim
Abstract:
This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. In addition, in existing studies, deep acting and surface acting are highly related to a positive outcome variable and a negative outcome variable, respectively. It was confirmed that for employees performing emotional labor, deep acting and surface acting are highly related to OCB and CWB, respectively. While positive emotion that employees come to experience during job performance process can easily trigger a positive non-task behavior such as OCB, negative emotion that employees experience through excessive workload or unfair treatment can easily induce a negative behavior like CWB. The two management behaviors of emotional labor, surface acting and deep acting, can have either a positive or negative effect on non-task behavior of employees, depending on which one they would choose. Thus, the purpose of this review paper is to clarify the relationship between emotional labor and non-task behavior more specifically.Keywords: emotion labor, non-task behavior, OCB, CWB
Procedia PDF Downloads 34811027 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method
Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius
Abstract:
The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.Keywords: carbon, coatings, copper, magnetron sputtering
Procedia PDF Downloads 28911026 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction
Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani
Abstract:
A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide
Procedia PDF Downloads 23911025 Fabrication of Hollow Germanium Spheres by Dropping Method
Authors: Kunal D. Bhagat, Truong V. Vu, John C. Wells, Hideyuki Takakura, Yu Kawano, Fumio Ogawa
Abstract:
Hollow germanium alloy quasi-spheres of diameters 1 to 2 mm with a relatively smooth inner and outer surface have been produced. The germanium was first melted at around 1273 K and then exuded from a coaxial nozzle into an inert atmosphere by argon gas supplied to the inner nozzle. The falling spheres were cooled by water spray and collected in a bucket. The spheres had a horn type of structure on the outer surface, which might be caused by volume expansion induced by the density difference between solid and gas phase. The frequency of the sphere formation was determined from the videos to be about 133 Hz. The outer diameter varied in the range of 1.3 to 1.8 mm with a wall thickness in the range of 0.2 to 0.5 mm. Solid silicon spheres are used for spherical silicon solar cells (S₃CS), which have various attractive features. Hollow S₃CS promise substantially higher energy conversion efficiency if their wall thickness can be kept to 0.1–0.2 mm and the inner surface can be passivated. Our production of hollow germanium spheres is a significant step towards the production of hollow S₃CS with, we hope, higher efficiency and lower material cost than solid S₃CS.Keywords: hollow spheres, semiconductor, compound jet, dropping method
Procedia PDF Downloads 20611024 Adherence Induced Formwork Removal in Small-Scale Pull-Off Tensile Tests
Authors: Nicolas Spitz, Nicolas Coniglio, Mohamed El Mansori, Alex Montagne, Sabeur Mezghani
Abstract:
Nowadays buildings' construction is performed by pouring concrete into molds referred to as formworks that are usually prefabricated metallic modules. Defects such as stripping may possibly form during the removal of the formwork if the interfacial bonding between the concrete and the formwork is high. A new pull-off tensile test was developed in our laboratory to simulate small-scale formwork removals. The concrete-to-formwork adherence force was measured on bare and coated formworks with different surface signatures. The used concrete was a mixture largely used on building sites and contains CEM I Portland cement and calcareous filler. The concrete surface appearance and the type of failures at the concrete-formwork interface have been investigated. The originality of this near-to-surface test was to compare the laboratory-measured adherence forces to the on-site observations. Based upon the small-scale laboratory test results, functional formwork specifications with low adherence to concrete was proposed in terms of superficial signature characteristics.Keywords: concrete-formwork adherence, interfacial bonding, skin formwork functionality, small-scale pull-off tensile test
Procedia PDF Downloads 24311023 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation
Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood
Abstract:
This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.Keywords: vertical-cavity surface-emitting lasers, VCSELs, optical power generation, power consumption, square wave modulation
Procedia PDF Downloads 16111022 Influence of Laser Excitation on SERS of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)
Procedia PDF Downloads 33111021 Domain Driven Design vs Soft Domain Driven Design Frameworks
Authors: Mohammed Salahat, Steve Wade
Abstract:
This paper presents and compares the SSDDD “Systematic Soft Domain Driven Design Framework” to DDD “Domain Driven Design Framework” as a soft system approach of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework has been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, a comparison between SSDDD and DDD is presented in this paper, to show how SSDDD improved DDD as an approach to modelling and implementing business domain perspectives for Information Systems Development. The comparison process, the results, and the improvements are presented in the following sections of this paper.Keywords: domain-driven design, soft domain-driven design, naked objects, soft language
Procedia PDF Downloads 29611020 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 48111019 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution
Authors: C. K. Ngaw
Abstract:
Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets
Procedia PDF Downloads 6411018 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions
Authors: Karima Bourenane, Aissa Keffous
Abstract:
In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.Keywords: silicon carbide, dissolution, Chemical etching, mechanism
Procedia PDF Downloads 5111017 Comparison of Efficient Production of Small Module Gears
Authors: Vaclav Musil, Robert Cep, Sarka Malotova, Jiri Hajnys, Frantisek Spalek
Abstract:
The new designs of satellite gears comprising a number of small gears pose high requirements on the precise production of small module gears. The objective of the experimental activity stated in this article was to compare the conventional rolling gear cutting technology with the modern wire electrical discharge machining (WEDM) technology for the production of small module gear m=0.6 mm (thickness of 2.5 mm and material 30CrMoV9). The WEDM technology lies in copying the profile of gearing from the rendered trajectory which is then transferred to the track of a wire electrode. During the experiment, we focused on the comparison of these production methods. Main measured parameters which significantly influence the lifetime and noise was chosen. The first parameter was to compare the precision of gearing profile in respect to the mathematic model. The second monitored parameter was the roughness and surface topology of the gear tooth side. The experiment demonstrated high accuracy of WEDM technology, but a low quality of machined surface.Keywords: precision of gearing, small module gears, surface topology, WEDM technology
Procedia PDF Downloads 23111016 Monitoring Saltwater Corrosion on Steel Samples Using Coda Wave Interferometry in MHZ Frequencies
Authors: Maxime Farin, Emmanuel Moulin, Lynda Chehami, Farouk Benmeddour, Pierre Campistron
Abstract:
Assessing corrosion is crucial in the petrochemical and marine industry. Usual ultrasonic methods based on guided waves to detect corrosion can inspect large areas but lack precision. We propose a complementary and sensitive ultrasonic method (~ 10 MHz) based on coda wave interferometry to detect and quantify corrosion at the surface of a steel sample. The method relies on a single piezoelectric transducer, exciting the sample and measuring the scattered coda signals at different instants in time. A laboratory experiment is conducted with a steel sample immersed in salted water for 60~h with parallel coda and temperature measurements to correct coda dependence to temperature variations. Micrometric changes to the sample surface caused by corrosion are detected in the late coda signals, allowing precise corrosion detection. Moreover, a good correlation is found between a parameter quantifying the temperature-corrected stretching of the coda over time with respect to a reference without corrosion and the corrosion surface over the sample recorded with a camera.Keywords: coda wave interferometry, nondestructive evaluation, corrosion, ultrasonics
Procedia PDF Downloads 23211015 Electrochemical Coagulation of Synthetic Textile Dye Wastewater
Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka
Abstract:
Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.Keywords: electrochemical coagulation, mild steel, colour, environmental engineering
Procedia PDF Downloads 30511014 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 23311013 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing
Procedia PDF Downloads 8911012 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis
Authors: Robert Saputra, Tomas Havlicek
Abstract:
This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance
Procedia PDF Downloads 1211011 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield
Authors: Shashikant Kumar, Chandraraj K.
Abstract:
Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.Keywords: Napier grass, optimization, pretreatment, sodium hydroxide
Procedia PDF Downloads 50411010 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida
Authors: N. Mehrotra, V. Ahuja, N. Sridharan
Abstract:
Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.Keywords: disaster, resilience, system, urban
Procedia PDF Downloads 45711009 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment
Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis
Abstract:
Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.Keywords: corrosion, surfactants, steel surface, quantum
Procedia PDF Downloads 37511008 Burnishing Effect on the Mechanical Characteristics of 100C6
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.Keywords: 100C6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 15411007 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers
Authors: Cristian Viespe, Dana Miu
Abstract:
Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation
Procedia PDF Downloads 148