Search results for: password based key derivation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28426

Search results for: password based key derivation

27286 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Multidisciplinary Design Optimisation, Rule Based Architecture, Aircraft Design, Decision Support System

Procedia PDF Downloads 355
27285 A Valid Professional Development Framework For Supporting Science Teachers In Relation To Inquiry-Based Curriculum Units

Authors: Fru Vitalis Akuma, Jenna Koenen

Abstract:

The science education community is increasingly calling for learning experiences that mirror the work of scientists. Although inquiry-based science education is aligned with these calls, the implementation of this strategy is a complex and daunting task for many teachers. Thus, policymakers and researchers have noted the need for continued teacher Professional Development (PD) in the enactment of inquiry-based science education, coupled with effective ways of reaching the goals of teacher PD. This is a complex problem for which educational design research is suitable. The purpose at this stage of our design research is to develop a generic PD framework that is valid as the blueprint of a PD program for supporting science teachers in relation to inquiry-based curriculum units. The seven components of the framework are the goal, learning theory, strategy, phases, support, motivation, and an instructional model. Based on a systematic review of the literature on effective (science) teacher PD, coupled with developer screening, we have generated a design principle per component of the PD framework. For example, as per the associated design principle, the goal of the framework is to provide science teachers with experiences in authentic inquiry, coupled with enhancing their competencies linked to the adoption, customization and design; then the classroom implementation and the revision of inquiry-based curriculum units. The seven design principles have allowed us to synthesize the PD framework, which, coupled with the design principles, are the preliminary outcomes of the current research. We are in the process of evaluating the content and construct validity of the framework, based on nine one-on-one interviews with experts in inquiry-based classroom and teacher learning. To this end, we have developed an interview protocol with the input of eight such experts in South Africa and Germany. Using the protocol, the expert appraisal of the PD framework will involve three experts from Germany, South Africa, and Cameroon, respectively. These countries, where we originate and/or work, provide a variety of inquiry-based science education contexts, making the countries suitable in the evaluation of the generic PD framework. Based on the evaluation, we will revise the framework and its seven design principles to arrive at the final outcomes of the current research. While the final content and construct a valid version of the framework will serve as an example of the needed ways through which effective inquiry-based science teacher PD may be achieved, the final design principles will be useful to researchers when transforming the framework for use in any specific educational context. For example, in our further research, we will transform the framework to one that is practical and effective in supporting inquiry-based practical work in resource-constrained physical sciences classrooms in South Africa. Researchers in other educational contexts may similarly consider the final framework and design principles in their work. Thus, our final outcomes will inform practice and research around the support of teachers to increase the incorporation of learning experiences that mirror the work of scientists in a worldwide manner.

Keywords: design principles, educational design research, evaluation, inquiry-based science education, professional development framework

Procedia PDF Downloads 152
27284 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range

Procedia PDF Downloads 332
27283 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks

Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden

Abstract:

Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.

Keywords: location based-services, routing protocols, scalability, wireless sensor networks

Procedia PDF Downloads 373
27282 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector

Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy

Abstract:

In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.

Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers

Procedia PDF Downloads 392
27281 Prognosis of Interstitial Lung Disease (ILD) Based on Baseline Pulmonary Function Test (PFT) Results in Omani Adult Patients Diagnosed with ILD In Sultan Qaboos University Hospital

Authors: Manal Al Bahri, Saif Al Mubahisi, Shamsa Al Shahaimi, Asma Al Qasabi, Jamal Al Aghbari

Abstract:

Introduction: ILD is a common disease worldwide and in Oman. No previous Omani study was published regarding ILD prognosis based on baseline PFT results and other factors. This study aims to determine the severity of ILD by the baseline PFT, correlate between baseline PFT and outcome, and study other factors that influence disease mortality. Method: It is a retrospective cohort study; data was collected from January 2011 to December 2021 from electronic patient records (EPR). Means, Standard Deviations, frequencies, and Chi-square tests were used to examine the different variables in the study. Results: The total population of the study was 146 patients; 87 (59.6%) were females, and 59 (40.4%) were males. The median age was 59 years. Age at diagnosis, CVA, rheumatological disease, and baseline FVC were found to be statistically significant predictors of mortality .59.6% of the patients are diagnosed with IPF. Most of our study patients had mild disease based on baseline FVC. Death was higher with the more severe disease based on FVC. In mild disease (FVC >70%), 26.9% of the patients died. In moderate disease (FVC 50-69%),55.7% of the patients died, and in the severe group (FVC <50 %), 55.1% died. This was statistically significant with a P value of 0. 001. There is no statistically significant difference in the overall survival distribution between the different groups of DLCO. Conclusion: In our study, we found that ILD is more common among females, but death is more common among males. Based on baseline PFT, we can predict mortality by FVC level, as moderate to severe limitation is associated with a lower survival rate. DLCO was not a statistically significant parameter associated with mortality.

Keywords: PFT, ILD, FVC, DLCO, mortality

Procedia PDF Downloads 35
27280 Mineral Thermal Insulation Materials Based on Sodium Liquid Glass

Authors: Zin Min Htet, Tikhomirova Irina Nikolaevna, Karpenko Marina A.

Abstract:

In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel.

Keywords: thermal insulation material, sodium liquid glass, foam glass granules, foaming agent, hardener, thermal conductivity, apparent density, compressive strength

Procedia PDF Downloads 190
27279 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel

Authors: Rachelly Ashwall, Ephraim Tabory

Abstract:

In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.

Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity

Procedia PDF Downloads 253
27278 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 484
27277 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 318
27276 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 425
27275 The Profitability Management Mechanism of Leather Industry-Based on the Activity-Based Benefit Approach

Authors: Mei-Fang Wu, Shu-Li Wang, Tsung-Yueh Lu, Feng-Tsung Cheng

Abstract:

Strengthening core competitiveness is the main goal of enterprises in a fierce competitive environment. Accurate cost information is a great help for managers in dealing with operation strategies. This paper establishes a profitability management mechanism that applies the Activity-Based Benefit approach (ABBA) to solve the profitability for each customer from the market. ABBA provides financial and non-financial information for the operation, but also indicates what resources have expired in the operational process. The customer profit management model shows the level of profitability of each customer for the company. The empirical data were gathered from a case company operating in the leather industry in Taiwan. The research findings indicate that 30% of customers create little profit for the company as a result of asking for over 5% of sales discounts. Those customers ask for sales discount because of color differences of leather products. This paper provides a customer’s profitability evaluation mechanism to help enterprises to greatly improve operating effectiveness and promote operational activity efficiency and overall operation profitability.

Keywords: activity-based benefit approach, customer profit analysis, leather industry, profitability management mechanism

Procedia PDF Downloads 308
27274 Teacher-Scaffolding vs. Peer-Scaffolding in Task-Based ILP Instruction: Effects on EFL Learners’ Metapragmatic Awareness

Authors: Amir Zand-Moghadam, Mahnaz Alizadeh

Abstract:

The aim of the present study was to investigate the effect of teacher-scaffolding versus peer-scaffolding on EFL learners’ metapragmatic awareness in the paradigm of task-based language teaching (TBLT). To this end, a number of dialogic information-gap tasks requiring two-way interactant relationship were designed for the five speech acts of request, refusal, apology, suggestion, and compliment following Ellis’s (2003) model. Then, 48 intermediate EFL learners were randomly selected, homogenized, and assigned to two groups: 26 participants in the teacher-scaffolding group (Group One) and 22 in the peer-scaffolding group (Group Two). While going through the three phases of pre-task, while-task, and post-task, the participants in the first group completed the designed tasks by the teacher’s interaction, scaffolding, and feedback. On the other hand, the participants in the second group were required to complete the tasks in expert-novice pairs through peer scaffolding in all the three phases of a task-based syllabus. The findings revealed that the participants in the teacher-scaffolding group developed their L2 metapragmatic awareness more than the peer-scaffolding group. Thus, it can be concluded that teacher-scaffolding is more effective than peer scaffolding in developing metapragmatic awareness among EFL learners. It can also be claimed that the use of tasks can be more influential when they are accompanied by teacher-scaffolding. The findings of the present study have implications for language teachers and researchers.

Keywords: ILP, metapragmatic awareness, scaffolding, task-based instruction

Procedia PDF Downloads 585
27273 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes

Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv

Abstract:

As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.

Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment

Procedia PDF Downloads 210
27272 Gender-Based Violence in Pakistan: Addressing the Root Causes

Authors: Hafiz Awais Ahmad

Abstract:

This paper aims to examine the root causes of gender-based violence (GBV) in Pakistan and proposes strategies to address this issue. Using a qualitative approach, this study analyzed data from various sources, including interviews with survivors of GBV and experts in the field. The findings revealed that GBV in Pakistan is deeply rooted in patriarchal attitudes and practices, economic insecurity, lack of education, and limited access to justice. The study recommends a multi-faceted approach to address GBV, including legislative reforms, awareness-raising campaigns, economic empowerment, and improved access to justice for survivors. Furthermore, the study highlights the importance of engaging men and boys in efforts to address GBV and promote gender equality. The findings of this study have important implications for policy-makers, practitioners, and researchers working towards ending GBV in Pakistan.

Keywords: gender-based violence, Pakistan, legislative reforms, advocacy

Procedia PDF Downloads 148
27271 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles

Authors: Behrooz Movahedi

Abstract:

Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.

Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF

Procedia PDF Downloads 135
27270 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 89
27269 Blockchain Solutions for IoT Challenges: Overview

Authors: Amir Ali Fatoorchi

Abstract:

Regardless of the advantage of LoT devices, they have limitations like storage, compute, and security problems. In recent years, a lot of Blockchain-based research in IoT published and presented. In this paper, we present the Security issues of LoT. IoT has three levels of security issues: Low-level, Intermediate-level, and High-level. We survey and compare blockchain-based solutions for high-level security issues and show how the underlying technology of bitcoin and Ethereum could solve IoT problems.

Keywords: Blockchain, security, data security, IoT

Procedia PDF Downloads 211
27268 The Impact of Artificial Intelligence on Textiles Technology

Authors: Ramy Kamel Fekrey Gadelrab

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 49
27267 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 275
27266 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 339
27265 Computational Experiment on Evolution of E-Business Service Ecosystem

Authors: Xue Xiao, Sun Hao, Liu Donghua

Abstract:

E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.

Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment

Procedia PDF Downloads 360
27264 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 256
27263 Multishape Task Scheduling Algorithms for Real Time Micro-Controller Based Application

Authors: Ankur Jain, W. Wilfred Godfrey

Abstract:

Embedded systems are usually microcontroller-based systems that represent a class of reliable and dependable dedicated computer systems designed for specific purposes. Micro-controllers are used in most electronic devices in an endless variety of ways. Some micro-controller-based embedded systems are required to respond to external events in the shortest possible time and such systems are known as real-time embedded systems. So in multitasking system there is a need of task Scheduling,there are various scheduling algorithms like Fixed priority Scheduling(FPS),Earliest deadline first(EDF), Rate Monotonic(RM), Deadline Monotonic(DM),etc have been researched. In this Report various conventional algorithms have been reviewed and analyzed, these algorithms consists of single shape task, A new Multishape scheduling algorithms has been proposed and implemented and analyzed.

Keywords: dm, edf, embedded systems, fixed priority, microcontroller, rtos, rm, scheduling algorithms

Procedia PDF Downloads 405
27262 Electrochemical Study of Ni and/or Fe Based Mono- And Bi- Hydroxides

Authors: H. Benaldjia, N. Habib, F. Djefaflia, A. Nait-Merzoug, A. Harat, J. El-Haskouri, O. Guellati

Abstract:

Currently, the technology has attracted knowledge of energy storage sources similar to batteries, capacitors and super-capacitors because of its very different applications in many fields with major social and economic challenges. Moreover, hydroxides have attracted much attention as a promising and active material choice in large-scale applications such as molecular adsorption/storage and separation for the environment, ion exchange, nanotechnology, supercapacitor for energy storage and conversion, electro-biosensing, and catalysts, due to their unique properties which are strongly influenced by their composition, microstructure, and synthesis method. In this context, we report in this study the synthesis of hydroxide-based nanomaterials precisely based on Ni and Fe using a simple hydrothermal method with mono and bi precursors at optimized growth conditions (6h-120°C). The obtained products were characterized using different techniques, such as XRD, FTIR, FESEM and BET, as well as electrochemical measurements.

Keywords: energy storage, Supercapacitors, nanocomposites, nanohybride, electro-active materials.

Procedia PDF Downloads 84
27261 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 157
27260 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 202
27259 Supervisor Controller-Based Colored Petri Nets for Deadlock Control and Machine Failures in Automated Manufacturing Systems

Authors: Husam Kaid, Abdulrahman Al-Ahmari, Zhiwu Li

Abstract:

This paper develops a robust deadlock control technique for shared and unreliable resources in automated manufacturing systems (AMSs) based on structural analysis and colored Petri nets, which consists of three steps. The first step involves using strict minimal siphon control to create a live (deadlock-free) system that does not consider resource failure. The second step uses an approach based on colored Petri net, in which all monitors designed in the first step are merged into a single monitor. The third step addresses the deadlock control problems caused by resource failures. For all resource failures in the Petri net model a common recovery subnet based on colored petri net is proposed. The common recovery subnet is added to the obtained system at the second step to make the system reliable. The proposed approach is evaluated using an AMS from the literature. The results show that the proposed approach can be applied to an unreliable complex Petri net model, has a simpler structure and less computational complexity, and can obtain one common recovery subnet to model all resource failures.

Keywords: automated manufacturing system, colored Petri net, deadlocks, siphon

Procedia PDF Downloads 129
27258 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance

Authors: Hirokatsu Kawashima

Abstract:

One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).

Keywords: auditory error recognition, intensive listening, interaction, investigation

Procedia PDF Downloads 514
27257 Development of Web-Based Iceberg Detection Using Deep Learning

Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith

Abstract:

Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.

Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution

Procedia PDF Downloads 91