Search results for: machine and plant engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9034

Search results for: machine and plant engineering

7894 Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes

Authors: F. Pedron, M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

Lead contamination of agricultural land mainly vegetated with perennial ryegrass (Lolium perenne) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H2O, KNO3, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of Lolium perenne showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant.

Keywords: bioavailability, Freundlich-like equation, sequential extraction, soil lead contamination

Procedia PDF Downloads 310
7893 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 339
7892 Utilization Of Medical Plants Tetrastigma glabratum (Blume) Planch from Mount Prau in the Blumah, Central Java

Authors: A. Lianah, B. Peter Sopade, C. Krisantini

Abstract:

Walikadep/Tetrastigma glabratum (Blume) Planch is a traditional herb that has been used by people of Blumah village; it is believed to have a stimulant effect and ailments for many illnesses. Our survey demonstrated that the people of Blumah village has exploited walikadep from Protected Forest of Mount Prau. More than 10% of 448 households at Blumah village have used walikadep as traditional herb or jamu. Part of the walikadep plants used is the liquid extract of the stem. The population of walikadep is getting scarce and it is rarely found now. The objectives of this study are to examine the stimulant effect of walikadep, to measure growth and exploitation rate of walikadep, and to find ways to effectively propagate the plants, as well as identifying the impact on the environment through field experiments and explorative survey. Stimulant effect was tested using open-field and hole-board test. Data were collected through field observation and experiment, and data were analysed using lab test and Anova. Rate of exploitation and plant growth was measured using Regression analysis; comparison of plant growth in-situ and ex-situ used descriptive analysis. The environmental impact was measured by population structure vegetation analysis method by Shannon Weinner. The study revealed that the walikadep exudates did not have a stimulant effect. Exploitation of walikadep and the long time required to reach harvestable size resulted in the scarcity of the plant in the natural habitat. Plant growth was faster in-situ than ex-situ; and fast growth was obtained from middle part cuttings treated with vermicompost. Biodiversity index after exploitation was higher than before exploitation, possibly due to the toxic and allellopathic effect (phenolics) of the plant. Based on these findings, further research is needed to examine the toxic effects of the leave and stem extract of walikadep and their allelopathic effects. We recommend that people of Blumah village to stop using walikadep as the stimulant. The local people, village government in the regional and central levels, and perhutani should do an integrated efforts to conserve walikadep through Pengamanan Terpadu Konservasi Walikadep Lestari (PTKWL) program, so this population of this plant in the natural habitat can be maintained.

Keywords: utilization, medical plants, traditional, Tetastigma glabratum

Procedia PDF Downloads 280
7891 Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species

Authors: Marwan Khalil Qader, Arshad Mohammad Abdullah

Abstract:

Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli.

Keywords: antimicrobial activity, pathogenic bacteria, plant extracts, chemical systems engineering

Procedia PDF Downloads 336
7890 Quality and Yield of Potato Seed Tubers as Influenced by Plant Growth Promoting Rhizobacteria

Authors: Muhammad Raqib Rasul, Tavga Sulaiman Rashid

Abstract:

Fertilization increases efficiency and obtains better quality of product recovery in agricultural activities. However, fertilizer consumption increased exponentially throughout the world, causing severe environmental problems. Biofertilizers can be a practical approach to minimize chemical fertilizer sources and ultimately develop soil fertility. This study was carried out to isolate, identify and characterize bacteria from medicinal plant (Rumex tuberosus L. and Verbascum sp.) rhizosphere for in vivo screening. 25 bacterial isolates were isolated and several biochemical tests were performed. Two isolates that were positive for most biochemical tests were chosen for the field experiment. The isolates were identified as Go1 Alcaligenes faecalis (Accession No. OP001725) and T11 (Bacillus sp.) based on the 16S rRNA sequence analysis that was compared with related bacteria in GenBank database using MEGA 6.1. For the field trial isolate GO1 and T11 (separately and mixed), NPK as a positive control was used. Both isolates increased plant height, chlorophyll content, number of tubers, and tuber’s weight. The results demonstrated that these two isolates of bacteria can potentially replace with chemical fertilizers for potato production.

Keywords: biofertilizer, Bacillus subtilis, Alcaligenes faecalis, potato tubers, in vivo screening

Procedia PDF Downloads 103
7889 Signaling of Leucine-Rich-Repeat Receptor-Like Kinases in Higher Plants

Authors: Man-Ho Oh

Abstract:

Membrane localized Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs) play crucial roles in plant growth and abiotic/biotic stress responses in higher plants including Arabidopsis and Brassica species. Among several Receptor-Like Kinases (RLKs), Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs) are the major group of genes that play crucial roles related to growth, development and stress conditions in plant system. Since it is involved in several functional roles, it seems to be very important to investigate their roles in higher plants. We are particularly interested in brassinosteroid (BR) signaling, which is mediated by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase and its co-receptor, BRI1-ASSOCIATED KINASE 1 (BAK1). Autophosphorylation of receptor kinases is recognized to be an important process in activation of signaling in higher plants. Although the plant receptors are generally classified as Ser/Thr protein kinases, many other receptor kinases including BRI1 and BAK1 are shown to autophosphorylate on Tyr residues in addition to Ser/Thr. As an interesting result, we determined that several 14-3-3 regulatory proteins bind to BRI1-CD and are phosphorylated by several receptor kinases in vitro, suggesting that BRI1 is critical for diverse signaling.

Keywords: autophosphorylation, brassinosteroid, BRASSINOSTEROID INSENSITIVE 1, BRI1-ASSOCIATED KINASE 1, Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs)

Procedia PDF Downloads 224
7888 GC-MS Analysis of Essential Oil From Satureja Hispidula: A Medicinal Plant from Algeria

Authors: Habiba Rechek, Ammar Haouat, Ratiba Mekkiou, Diana C. G. A. Pinto, Artur M. S. Silva

Abstract:

Satureja hispidula is an aromatic and medicinal plant belonging to the family of Lamiaceae native to Algeria, just like mint or thyme. Although she is less known to the general public than her more famous cousins, this species has many therapeutic properties that have been used for centuries in traditional medicine of some regions. For generations, Satureja hispidula has been used in traditional medicine to treat various ailments, including respiratory diseases and diabetes. Its aroma, often described as close to that of mint, gives it a special interest in aromatherapy. Due to the growing interest in the beneficial properties of plant-derived essential oils, the aim of this study is to analyze the chemical composition of S. hispidula essential oil by gas chromatography coupled with mass spectrometry (GC-MS). Identifying the main constituents of essential oil will allow better understanding its chemical nature and exploring its potential for culinary and therapeutic application. The study of the essential oil of S. hispidula reveals a composition rich in 83 compounds, including menthone, pulegone and piperitone as main constituents. This gas chromatography analysis coupled with mass spectrometry provides valuable information about the chemical nature of this oil. However, more in-depth studies are needed to explore the potentially health-enhancing properties of this essential oil.

Keywords: satureja hispidula, GC-MS, essential oil, menthone, pulegone

Procedia PDF Downloads 27
7887 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 142
7886 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 440
7885 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum

Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold

Abstract:

Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.

Keywords: biocatalyst, fluorinase, gifblaar, transcriptome

Procedia PDF Downloads 273
7884 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
7883 Seasonal Profile of the Feeding Ecology of Auchenoglanis Occidentalis from Tagwai Lake, Minna Niger State, Nigeria

Authors: V. I. Chukwuemeka, S. M. Tsadu, R. O. Ojutiku, R. J. Kolo

Abstract:

The food and feeding habits of Auchenoglanis occidentalis, which is commonly called the “BuBu” cat fish or the giraffe cat fish from Tagwai Lake Minna, was analysed from January to June, 2013. A total of 216 fish specimen were used for the study which were obtained from the local fishermen operating in Tagwai Lake Minna. Fishing gears used include cast nets and gills nets of various sizes. They also use hook and lines. The frequency of occurrence and dominance method were used to analyse the food in the gut. Auchenoglanis occidentalis from Tagwai Lake, Minna had a broad spectrum of food items in the gut, ranging from insects, fish, plant materials to protozoan. The percentage of insects was (31.75%), fish (12.70%), Chyme (20.63%), plant materials (20.63%), protozoa (1.59%) and soil (12.70%). The presence of different food items in the gut of the Auchenoglanis occidentalis which ranged from animal to plant and soil made it to be considered as an omnivore bottom feeder. The food habits of this fish showed no remarkable difference between the dry season months and the rainy season months. The broad food spectrum of the fish makes them a good aquaculture candidate. It also suggests that the specie feed both in surface water and near the substratum (sand).

Keywords: Auchenoglanis occidentalis, ecology, Tagwai Lake, Nigeria

Procedia PDF Downloads 572
7882 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models

Authors: É. Vincze

Abstract:

Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.

Keywords: inner quality, plant density, rapeseed, sowing time

Procedia PDF Downloads 200
7881 Design of Semi-Autonomous Street Cleaning Vehicle

Authors: Khouloud Safa Azoud, Süleyman Baştürk

Abstract:

In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.

Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems

Procedia PDF Downloads 34
7880 An Application of a Feedback Control System to Minimize Unforeseen Disruption in a Paper Manufacturing Industry in South Africa

Authors: Martha E. Ndeley

Abstract:

Operation management is the key element within the manufacturing process. However, during this process, there are a number of unforeseen disruptions that causes the process to a standstill which are, machine breakdown, employees absenteeism, improper scheduling. When this happens, it forces the shop flow to a rescheduling process and these strategy reschedules only a limited part of the initial schedule to match up with the pre-schedule at some point with the objective to create a new schedule that is reliable which in the long run gets disrupted. In this work, we have developed feedback control system that minimizes any form of disruption before the impact becomes severe, the model was tested in a paper manufacturing industries and the results revealed that, if the disruption is minimized at the initial state, the impact becomes unnoticeable.

Keywords: disruption, machine, absenteeism, scheduling

Procedia PDF Downloads 306
7879 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 194
7878 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 39
7877 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
7876 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 145
7875 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 255
7874 Machine Learning Based Smart Beehive Monitoring System Without Internet

Authors: Esra Ece Var

Abstract:

Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.

Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture

Procedia PDF Downloads 239
7873 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment

Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji

Abstract:

Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.

Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting

Procedia PDF Downloads 340
7872 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 353
7871 Ethno-Botanical Survey on the Rare and Endangered Medicinal Plants of Poonch District (Jammu and Kashmir)

Authors: Shazia Shamim, Pallavi Gautam

Abstract:

The present study describes the presence of rare or endangered plants from Poonch Dist., which spread over 1674 Km sq. located between latitude 330 25' N to 340 01' N and longitude 730 58' E to 740 35' E forming a part of the Northwest Himalaya in Jammu and Kashmir state of India, with the aim of suggesting the strategy for the conservation and promotion of cultivation of rare and endangered medicinal plants, as well as developing traditional knowledge of medicinal plants. The main threats to biodiversity and ecosystem are overexploitation, global climate change, habitat loss, fragmentation, pollution, and invasion of alien species and disturbance of community structure. Surveys were carried out during 2015-2016 throughout the Poonch valley. During the field survey, various criteria of International Union for the conservation of nature for categorizing threatened plants, extent of occurrence, area of occupancy, probability of extinction, etc. were measured. The rarity of species was determined by field study, visual estimations, and literature. During the collection, it was observed that few rare and endangered species which were present in the study area, are also mentioned in the prescribed red data book of Indian plants, International Union for conservation of nature, list of threatened species and list of Botanical Survey of India presented by its Northern Regional Centre. The study was based on extensive surveys of the study area and then concluded by preparing a list of plant species occurring in different seasons, the photographs of all these plant species were collected. Actual threats to the population of a selected plant species in a given area were recorded by direct observation. The present paper provides information about 22 rare and endangered medicinal plant species belonging to 18 families that are used by the native of these areas. Information provided includes botanical name, family name, local name, habitat, part used, ethno medicinal uses and brief preparation of the reported plant species is presented in the present work.

Keywords: biodiversity, traditional knowledge, International Union for Conservation of Nature, Botanical Survery of India

Procedia PDF Downloads 135
7870 Agricultural Biotechnology Crop Improvement

Authors: Mohsen Rezaei Aghdam

Abstract:

Recombinant DNA technology has meaningfully augmented the conventional crop improvement and has a great possibility to contribution plant breeders to encounter the augmented food request foretold for the 21st century. Predictable changes in weather and its erraticism, chiefly extreme fevers and vicissitudes in rainfall are expected to brand crop upgrading even more vital for food manufacture. Tissue attitude has been downtrodden to create genetic erraticism from which harvest plants can be better, to improve the state of health of the recognized physical and to upsurge the number of wanted germplasms obtainable to the plant breeder. This appraisal delivers an impression of the chances obtainable by the integration of vegetable biotechnology into plant development efforts and increases some of the social subjects that need to be considered in their application. Public-private companies offer chances to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions. Novel varieties derivative by encouraged mutatgenesis are used commonly: rice in Thailand. These paper combinations obtainable data about the influence of change breeding-derived crop changes around the world, traveler magnetism the possibility of mutation upbringing as a flexible and feasible approach appropriate to any crop if that suitable objectives and selection approaches are used.

Keywords: crop, improve, genetic, agricultural

Procedia PDF Downloads 167
7869 Effect of Different Planting Times and Mulching Materials on Seed Quality and Yield of China Aster Cultivars

Authors: A. A. Bajad, B. P. Sharma, Y. C. Gupta, B. S. Dilt, R. K. Gupta

Abstract:

The present investigations were carried out at the experimental farm of Department of Floriculture and Landscape Architecture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during 2015 and 2016. The experiment was laid out in a Randomized Block Design (factorial) consisting of 48 treatment combinations of four planting dates viz., D1- mid March, D2-mid April, D3-mid May and D4- mid June and two cultivars namely V1- Kamini and V2 -Poornima with six mulching materials M¬0¬- without mulch, M1- Black plastic mulch (100 µ), M2- Silver plastic mulch (100 µ), M3¬- Transparent plastic mulch (100 µ), M3-Transparent plastic mulch (100 µ), M4¬- Pine needle (100 µ) and M5- Grass (1 inch layer). Among different planting times, D4 i.e. mid June planting obtained best results for number of seed per flower (179.38), germination percent (83.92 %), electrical conductivity (0.97 ds/m), seedling length (7.93 cm), seedling dry weight (7.09 mg), seedling vigour index I (763.79), moisture content (7.83 %) and 1000 seed weight (1.94 g). However, seed yield per plant (14.30 g) was recorded to be maximum in mid of March. Among the cultivars, cv. ‘Poornima’ gave best results for number of seed per plant (187.30). However, cv. ‘Kamini’ recorded the best result for seed yield per plant (12.55), electrical conductivity (1.11 ds/m), germination percent (80.47 %), seedling length (6.39 cm), seedling dry weight (5.11 mg), seedling vigour index I (649.49), moisture content (9.28 %) and 1000 seed weight (1.70 g). Silver plastic obtained best results for number of seed per flower (170.10), seed yield per plant (15.66 g), germination percent (80.17 %), electrical conductivity (1.26 ds/m), seedling length (5.88 cm), seedling dry weight (4.46 mg), seedling vigour index I (616.78), Moisture content (9.35 %) and 100 seed weight (1.97 g).

Keywords: cultivars, mulch materials, planting times, flowers

Procedia PDF Downloads 287
7868 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 113
7867 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
7866 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 261
7865 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124