Search results for: evolving learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7693

Search results for: evolving learning

6553 The Role of Communicative Grammar in Cross-Cultural Learning Environment

Authors: Tonoyan Lusine

Abstract:

The Communicative Grammar (CG) of a language deals with semantics and pragmatics in the first place as communication is a process of generating speech. As it is well known people can communicate with the help of limited word expressions and grammatical means. As to non-verbal communication, both vocabulary and grammar are not essential at all. However, the development of the communicative competence lies in verbal, non-verbal, grammatical, socio-cultural and intercultural awareness. There are several important issues and environment management strategies related to effective communication that one might need to consider for a positive learning experience. International students bring a broad range of cultural perspectives to the learning environment, and this diversity has the capacity to improve interaction and to enrich the teaching/learning process. Intercultural setting implies creative and thought-provoking work with different cultural worldviews and international perspectives. It is worth mentioning that the use of Communicative Grammar models creates a profound background for the effective intercultural communication.

Keywords: CG, cross-cultural communication, intercultural awareness, non-verbal behavior

Procedia PDF Downloads 393
6552 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 179
6551 The Efficacy of Open Educational Resources in Students’ Performance and Engagement

Authors: Huda Al-Shuaily, E. M. Lacap

Abstract:

Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.

Keywords: EDM, learning analytics, moodle, OER, student-engagement

Procedia PDF Downloads 339
6550 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies

Authors: Samuel Quick

Abstract:

The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.

Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology

Procedia PDF Downloads 183
6549 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 108
6548 Using Integrative Assessment in Distance Learning: The Case of Department of Education - Navotas City

Authors: Meduranda Marco

Abstract:

This paper aimed to discuss the Integrative Assessment (IA) initiative of the Schools Division Office - Navotas City. The introduction provided a brief landscape analysis of the current state of education, the context of SDO Navotas, and the rationale for the administration of Integrative Assessment (IA) in schools. The IA methodology, procedure, and implementation activities were also shared. Feedback and reports on IA showed positive results as all schools in the Division were able to operationalize IA and consequently foster academic ease for learners and parents. Challenges met after compliance were also documented and strategies to continuously improve the Integrative Assessment process were proposed.

Keywords: distance learning assessment, integrative assessment, academic ease, learning outcomes evaluation

Procedia PDF Downloads 142
6547 A Survey of Some Technology Enhanced Teaching and Learning Techniques: Implication to Educational Development in Nigeria

Authors: Abdullahi Bn Umar

Abstract:

Over the years curriculum planners and researchers in education have continued to seek for ways to improve teaching and learning by way of varying approaches to curriculum and instruction in line with dynamic nature of knowledge. In this regards various innovative strategies to teaching and learning have been adopted to match with the technological advancement in education particularly in the aspect of instructional delivery through Information Communication Technology (ICT) as a tools. This paper reviews some innovative strategies and how they impact on learner’s achievement and educational development in Nigeria. The paper concludes by recommending innovative approach appropriate for use in Nigerian context.

Keywords: innovation, instructional delivery, virtual laboratory, educational design

Procedia PDF Downloads 483
6546 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
6545 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
6544 Effects of Live Webcast-Assisted Teaching on Physical Assessment Technique Learning of Young Nursing Majors

Authors: Huey-Yeu Yan, Ching-Ying Lee, Hung-Ru Lin

Abstract:

Background: Physical assessment is a vital clinical nursing competence. The gap between conventional teaching method and the way e-generation students’ preferred could be bridged owing to the support of Internet technology, i.e. interacting with online media to manage learning works. Nursing instructors in the wake of new learning pattern of the e-generation students are challenged to actively adjust and make teaching contents and methods more versatile. Objective: The objective of this research is to explore the effects on teaching and learning with live webcast-assisted on a specific topic, Physical Assessment technique, on a designated group of young nursing majors. It’s hoped that, with a way of nursing instructing, more versatile learning resources may be provided to facilitate self-directed learning. Design: This research adopts a cross-sectional descriptive survey. The instructor demonstrated physical assessment techniques and operation procedures via live webcast broadcasted online to all students. It increased both the off-time interaction between teacher and students concerning teaching materials. Methods: A convenient sampling was used to recruit a total of 52 nursing-majors at a certain university. The nursing majors took two-hour classes of Physical Assessment per week for 18 weeks (36 hrs. in total). The instruction covered four units with live webcasting and then conducted an online anonymous survey of learning outcomes by questionnaire. The research instrument was the online questionnaire, covering three major domains—online media used, learning outcome evaluation and evaluation result. The data analysis was conducted via IBM SPSS Statistics Version 2.0. The descriptive statistics was undertaken to describe the analysis of basic data and learning outcomes. Statistical methods such as descriptive statistics, t-test, ANOVA, and Pearson’s correlation were employed in verification. Results: Results indicated the following five major findings. (1) learning motivation, about four fifth of the participants agreed the online instruction resources are very helpful in improving learning motivation and raising the learning interest. (2) learning needs, about four fifth of participants agreed it was helpful to plan self-directed practice after the instruction, and meet their needs of repetitive learning and/or practice at their leisure time. (3) learning effectiveness, about two third agreed it was helpful to reduce pre-exam anxiety, and improve their test scores. (4) course objects, about three fourth agreed that it was helpful to achieve the goal of ‘executing the complete Physical Assessment procedures with proper skills’. (5) finally, learning reflection, about all of participants agreed this experience of online instructing, learning, and practicing is beneficial to them, they recommend instructor to share with other nursing majors, and they will recommend it to fellow students too. Conclusions: Live webcasting is a low-cost, convenient, efficient and interactive resource to facilitate nursing majors’ motivation of learning, need of self-directed learning and practice, outcome of learning. When live webcasting is integrated into nursing teaching, it provides an opportunity of self-directed learning to promote learning effectiveness, as such to fulfill the teaching objective.

Keywords: innovative teaching, learning effectiveness, live webcasting, physical assessment technique

Procedia PDF Downloads 132
6543 Students' Perceptions of Social Media as a Means to Improve Their Language Skills

Authors: Bahia Braktia, Ana Marcela Montenegro Sanchez

Abstract:

Social media, such as Facebook, Twitter, and YouTube, has been used for teaching and learning for quite some time. These platforms have been proven to be a good tool to improve various language skills, students’ performance of the English language, motivation as well as trigger the authentic language interaction. However, little is known about the potential effects of social media usage on the learning performance of Arabic language learners. The present study explores the potential role that the social media technologies play in learning Arabic as a foreign language at a university in Southeast of United States. In order to investigate this issue, an online survey was administered to examine the perceptions and attitudes of American students learning Arabic. The research questions were: How does social media, specifically Facebook and Twitter, impact the students' Arabic language skills, and what is their attitude toward it? The preliminary findings of the study showed that students had a positive attitude toward the use of social media to enhance their Arabic language skills, and that they used a range of social media features to expose themselves to the Arabic language and communicate in Arabic with native Arabic speaking friends. More detailed findings will be shared in the light data analysis with the audience during the presentation.

Keywords: foreign language learning, social media, students’ perceptions, survey

Procedia PDF Downloads 215
6542 Learning in Multicultural Workspaces: A Case of Aged Care

Authors: Robert John Godby

Abstract:

To be responsive now and in the future, workplaces must address the demands of multicultural teams as they become more common elements of the global labor force. This is especially the case for aged care due to the aging population, industry growth and migrant recruitment. This research identifies influences on and improvements for learning in these environments. Its unique contribution is to illuminate how culturally diverse workplaces can work and learn together more effectively. A mixed-methods approach was used to gather data about this topic in two phases. Firstly, the research methods included a survey of 102 aged care workers around Australia from two multi-site aged care organisations. The questionnaire elicited both quantitative and qualitative data about worker characteristics and perspectives on working and learning in aged care. Secondly, a case study of one aged care worksite was formulated drawing on worksite information and interviews with workers. A review of the literature suggests that learning in multicultural work environments is influenced by three main factors: 1) the individual workers themselves, 2) their interaction with each other and 3) the environment in which they work. There are various accounts of these three factors, how they are manifested and how they lead to a change in workers’ disposition, knowledge, or expertise when confronted with new circumstances. The study has found that a key individual factor influencing learning is cultural background. Their unique view of the world was shown to affect their approach to both their work and co-working. Interactional factors suggest that the high requirement for collaboration in aged care positively supports learning in this context; however, it can be hindered by cultural bias and spoken accent. The study also found that environmental factors, such as disruptions caused by the pandemic, were another key influence. For example, the need to wear face masks hindered the communication needed for workplace learning. This was especially challenging due to the diverse language backgrounds and abilities within the teams. Potential improvements for learning in multicultural aged care work environments were identified. These include more frequent and structured inter-peer learning (e.g. buddying), communication training (e.g. English language usage for both native and non-native speaking workers) and support for cross-cultural habitude (e.g. recognizing and adapting to cultural differences). Workplace learning in cross-cultural aged care environments is an area that is not extensively dealt with in the literature. This study addresses this gap and holds the potential to contribute practical insights to aged care and other diverse industries.

Keywords: cross-cultural learning, learning in aged care, migrant learning, workplace learning

Procedia PDF Downloads 159
6541 Softening Finishing: Teaching and Learning Materials

Authors: C.W. Kan

Abstract:

Softening applied on textile products based on several reasons. First, the synthetic detergent removes natural oils and waxes, thus lose the softness. Second, compensate the harsh handle of resin finishing. Also, imitate natural fibres and improve the comfort of fabric are the reasons to apply softening. There are different types of softeners for softening finishing of textiles, nonionic softener, anionic softener, cationic softener and silicone softener. The aim of this study is to illustrate the proper application of different softeners and their final softening effect in textiles. The results could also provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, softening, textiles, effect

Procedia PDF Downloads 217
6540 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 88
6539 Exploring Key Elements of Successful Distance Learning Programs: A Case Study in Palau

Authors: Maiya Smith, Tyler Thorne

Abstract:

Background: The Pacific faces multiple healthcare crises, including high rates of noncommunicable diseases, infectious disease outbreaks, and susceptibility to natural disasters. These issues are expected to worsen in the coming decades, increasing the burden on an already understaffed healthcare system. Telehealth is not new to the Pacific, but improvements in technology and accessibility have increased its utility and have already proven to reduce costs and increase access to care in remote areas. Telehealth includes distance learning; a form of education that can help alleviate many healthcare issues by providing continuing education to healthcare professionals and upskilling staff, while decreasing costs. This study examined distance learning programs at the Ministry of Health in the Pacific nation of Palau and identified key elements to their successful distance learning programs. Methods: Staff at the Belau National Hospital in Koror, Palau as well as private practitioners were interviewed to assess distance learning programs utilized. This included physicians, IT personnel, public health members, and department managers of allied health. In total, 36 people were interviewed. Standardized questions and surveys were conducted in person throughout the month of July 2019. Results: Two examples of successful distance learning programs were identified. Looking at the factors that made these programs successful, as well as consulting with staff who undertook other distance learning programs, four factors for success were determined: having a cohort, having a facilitator, dedicated study time off from work, and motivation. Discussion: In countries as geographically isolated as the Pacific, with poor access to specialists and resources, telehealth has the potential to radically change how healthcare is delivered. Palau shares similar resources and issues as other countries in the Pacific and the lessons learned from their successful programs can be adapted to help other Pacific nations develop their own distance learning programs.

Keywords: distance learning, Pacific, Palau, telehealth

Procedia PDF Downloads 140
6538 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 108
6537 Integrating Explicit Instruction and Problem-Solving Approaches for Efficient Learning

Authors: Slava Kalyuga

Abstract:

There are two opposing major points of view on the optimal degree of initial instructional guidance that is usually discussed in the literature by the advocates of the corresponding learning approaches. Using unguided or minimally guided problem-solving tasks prior to explicit instruction has been suggested by productive failure and several other instructional theories, whereas an alternative approach - using fully guided worked examples followed by problem solving - has been demonstrated as the most effective strategy within the framework of cognitive load theory. An integrated approach discussed in this paper could combine the above frameworks within a broader theoretical perspective which would allow bringing together their best features and advantages in the design of learning tasks for STEM education. This paper represents a systematic review of the available empirical studies comparing the above alternative sequences of instructional methods to explore effects of several possible moderating factors. The paper concludes that different approaches and instructional sequences should coexist within complex learning environments. Selecting optimal sequences depends on such factors as specific goals of learner activities, types of knowledge to learn, levels of element interactivity (task complexity), and levels of learner prior knowledge. This paper offers an outline of a theoretical framework for the design of complex learning tasks in STEM education that would integrate explicit instruction and inquiry (exploratory, discovery) learning approaches in ways that depend on a set of defined specific factors.

Keywords: cognitive load, explicit instruction, exploratory learning, worked examples

Procedia PDF Downloads 126
6536 Infrastructural Barriers to Engaged Learning in the South Pacific: A Mixed-Methods Study of Cook Islands Nurses' Attitudes towards Health Information Technology

Authors: Jonathan Frank, Michelle Salmona

Abstract:

We conducted quantitative and qualitative analyses of nurses’ perceived ease of use of electronic medical records and telemedicine in the Cook Islands. We examined antecedents of perceived ease of use through the lens of social construction of learning, and cultural diffusion. Our findings confirmed expected linkages between PEOU, attitudes and intentions. Interviews with nurses suggested infrastructural barriers to engaged learning. We discussed managerial implications of our findings, and areas of interest for future research.

Keywords: health information technology, ICT4D, TAM, developing countries

Procedia PDF Downloads 289
6535 Improving Students’ Participation in Group Tasks: Case Study of Adama Science and Technology University

Authors: Fiseha M. Guangul, Annissa Muhammed, Aja O. Chikere

Abstract:

Group task is one method to create the conducive environment for the active teaching-learning process. Performing group task with active involvement of students will benefit the students in many ways. However, in most cases all students do not participate actively in the group task, and hence the intended benefits are not acquired. This paper presents the improvements of students’ participation in the group task and learning from the group task by introducing different techniques to enhance students’ participation. For the purpose of this research Carpentry and Joinery II (WT-392) course from Wood Technology Department at Adama Science and Technology University was selected, and five groups were formed. Ten group tasks were prepared and the first five group tasks were distributed to the five groups in the first day without introducing the techniques that are used to enhance participation of students in the group task. On another day, the other five group tasks were distributed to the same groups and various techniques were introduced to enhance students’ participation in the group task. The improvements of students’ learning from the group task after the implementation of the techniques. After implementing the techniques the evaluation showed that significant improvements were obtained in the students’ participation and learning from the group task.

Keywords: group task, students participation, active learning, the evaluation method

Procedia PDF Downloads 214
6534 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
6533 Examining French Teachers’ Teaching and Learning Approaches in Some Selected Junior High Schools in Ghana

Authors: Paul Koffitse Agobia

Abstract:

In 2020 the Ministry of Education in Ghana and the National Council for Curriculum and Assessment (NaCCA) rolled out a new curriculum, Common Core Programme (CCP) for Basic 7 to 10, that lays emphasis on character building and values which are important to the Ghanaian society by providing education that will produce character–minded learners, with problem solving skills, who can play active roles in dealing with the increasing challenges facing Ghana and the global society. Therefore, learning and teaching approaches that prioritise the use of digital learning resources and active learning are recommended. The new challenge facing Ghanaian teachers is the ability to use new technologies together with the appropriate content pedagogical knowledge to help learners develop, aside the communication skills in French, the essential 21st century skills as recommended in the new curriculum. This article focusses on the pedagogical approaches that are recommended by NaCCA. The study seeks to examine French language teachers’ understanding of the recommended pedagogical approaches and how they use digital learning resources in class to foster the development of these essential skills and values. 54 respondents, comprised 30 teachers and 24 head teachers, were selected in 6 Junior High schools in rural districts (both private and public) and 6 from Junior High schools in an urban setting. The schools were selected in three regions: Volta, Central and Western regions. A class observation checklist and an interview guide were used to collect data for the study. The study reveals that some teachers adopt teaching techniques that do not promote active learning. They demonstrate little understanding of the core competences and values, therefore, fail to integrate them in their lessons. However, some other teachers, despite their lack of understanding of learning and teaching philosophies, adopted techniques that can help learners develop some of the core competences and values. In most schools, digital learning resources are not utilized, though teachers have smartphones or laptops.

Keywords: active learning, core competences, digital learning resources, pedagogical approach, values.

Procedia PDF Downloads 76
6532 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
6531 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 14
6530 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
6529 E-Immediacy in Saudi Higher Education Context: Female Students’ Perspectives

Authors: Samar Alharbi, Yota Dimitriadi

Abstract:

The literature on educational technology in Saudi Arabia reveals female learners’ unwillingness to study fully online courses in higher education despite the fact that Saudi universities have offered a variety of online degree programmes to undergraduate students in many regions of the country. The root causes keeping female students from successfully learning in online environments are limited social interaction, lack of motivation and difficulty with the use of e-learning platforms. E-immediacy remains an important method of online teaching to enhance students’ interaction and support their online learning. This study explored Saudi female students’ perceptions, as well as the experiences of lecturers’ immediacy behaviours in online environments, who participate in fully online courses using Blackboard at a Saudi university. Data were collected through interviews with focus groups. The three focus groups included five to seven students each. The female participants were asked about lecturers’ e-immediacy behaviours and which e-immediacy behaviours were important for an effective learning environment. A thematic analysis of the data revealed three main themes: the encouragement of student interaction, the incorporation of social media and addressing the needs of students. These findings provide lecturers with insights into instructional designs and strategies that can be adopted in using e-immediacy in effective ways, thus improving female learners’ interactions as well as their online learning experiences.

Keywords: e-learning, female students, higher education, immediacy

Procedia PDF Downloads 348
6528 The Influence of Mathematic Learning Outcomes towards Physics Ability in Senior High School through Authentic Assessment System

Authors: Aida Nurul Safitri, Rosita Sari

Abstract:

Physics is science, which in its learning there are some product such as theory, fact, concept, law and formula. So that to understand physics lesson students not only need a theory or concept but also mathematical calculation to solve physics problem through formula or equation. This is can be taken from mathematics lesson which obtained by students. This research is to know the influence of mathematics learning outcomes towards physics ability in Senior High School through authentic assessment system. Based on the researches have been discussed, is obtained that mathematic lesson have an important role in physics learning but it according to one aspect only, namely cognitive aspect. In Indonesia, curriculum of 2013 reinforces displacement in the assessment, from assessment through test (measuring the competence of knowledge based on the result) toward authentic assessment (measuring the competence of attitudes, skills, and knowledge based on the process and results). In other researches are mentioned that authentic assessment system give positive responses for students to improve their motivation and increase the physics learning in the school.

Keywords: authentic assessment, curriculum of 2013, mathematic, physics

Procedia PDF Downloads 248
6527 The Effects of Drill and Practice Courseware on Students’ Achievement and Motivation in Learning English

Authors: Y. T. Gee, I. N. Umar

Abstract:

Students’ achievement and motivation in learning English in Malaysia is a worrying trend as it is lagging behind several other countries in Asia. Thus, necessary actions have to be taken by the parties concerned to overcome this problem. The purpose of this research was to study the effects of drill and practice courseware on students’ achievement and motivation in learning English language. A multimedia courseware was developed for this purpose. The independent variable was the drill and practice courseware while the dependent variables were the students’ achievement and motivation. Their achievement was measured using pre-test and post-test scores, while motivation was measured using a questionnaire adapted from Keller’s (1979) Instructional Materials Motivation Scale. A total of 60 students from three vernacular primary schools in a northern state in Malaysia were randomly selected in this study. The findings indicate: (1) a significant difference between the students’ pre-test and post-test scores after using the courseware, (2) no significant difference in the achievement score between male and female students after using the courseware, (3) a significant difference in motivation score between the female and the male students, and (4) while the female students scored significantly higher than the male students in the aspects of relevance, confidence and satisfaction, no significant difference in terms of attention was observed between them. Overall, the findings clearly indicate that although the female students are significantly more motivated than their male students, they are equally good in terms of achievement after learning from the courseware. Through this study, the drill and practice courseware is proven to influence the students’ learning and motivation.

Keywords: courseware, drill and practice, English learning, motivation

Procedia PDF Downloads 307
6526 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
6525 Foreign Language Reading Comprehenmsion and the Linguistic Intervention Program

Authors: Silvia Hvozdíková, Eva Stranovská

Abstract:

The purpose of the article is to discuss the results of the research conducted during the period of two semesters paying attention to selected factors of foreign language reading comprehension through the means of Linguistic Intervention Program. The Linguistic Intervention Program was designed for the purpose of the current research. It refers to such method of foreign language teaching which emphasized active social learning, creative drama strategies, self-directed learning. The research sample consisted of 360 respondents, foreign language learners ranging from 13 – 17 years of age. Specifically designed questionnaire and a standardized foreign language reading comprehension tests were applied to serve the purpose. The outcomes of the research recorded significant results towards significant relationship between selected elements of the Linguistic Intervention Program and the academic achievements in the factors of reading comprehension.

Keywords: foreign language learning, linguistic intervention program, reading comprehension, social learning

Procedia PDF Downloads 119
6524 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 498