Search results for: data block
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25876

Search results for: data block

24736 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: RWIS, visibility distance, low visibility, adverse weather

Procedia PDF Downloads 246
24735 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 554
24734 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 64
24733 Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops

Authors: Josephine R. Migalbin, Jurhamid C. Imlan, Evelyn P. Esteban

Abstract:

A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant.

Keywords: marketable fruit yield, vermicompost, vermitea, vegetable crops

Procedia PDF Downloads 577
24732 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 396
24731 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 583
24730 Secure Cryptographic Operations on SIM Card for Mobile Financial Services

Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas

Abstract:

Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.

Keywords: SIM card, mobile financial services, cryptography, secure data storage

Procedia PDF Downloads 310
24729 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 13
24728 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
24727 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 273
24726 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 344
24725 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 237
24724 Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei

Authors: Isobel Hambleton, Mark Carrington

Abstract:

Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function.

Keywords: bloodstream expression site, morpholino, precytokinesis cell cycle arrest, variant surface glycoprotein

Procedia PDF Downloads 149
24723 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 84
24722 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 169
24721 Effect of Pollination on Qualitative Characters of Rapeseed (Brassica campestris l. Var. Toria) Seed in Chitwan, Nepal

Authors: Rameshwor Pudasaini

Abstract:

An experiment was conducted to study the effect of pollination quality of rapeseed seed in Chitwan during 2012-2013. The experiment was designed in Randomized Complete Block with four replications and five pollination treatments. The rapeseed plots were caged with mosquito nets at 10% flowering except natural pollination. Two-framed colonies of Apis mellifera L. and Apis cerana F. were introduced separately for pollination, and control plot caged without pollinators. The highest germination percent was observed on Apis cerana F. pollinated plot seeds (90.50% germination) and lowest on control plots (42.00% germination) seeds. Similarly, seed test weight of Apis cerana F. pollinated plots (3.22 gm/ 1000 seed) and Apis mellifera L. pollinated plots (2.93 gm/1000 seed) were and control plots (2.26 gm/ 1000 seed) recorded respectively. However, oil content was recorded highest on pollinated by Apis cerana F. (36.1 %) and lowest on control plots (32.8%). This study clearly indicated pollination increases the seed quality of rapeseed and therefore, management of honeybee is necessary for higher quality of rapeseed under Chitwan condition.

Keywords: apis cerana, apis mellifera, rapeseed pollination, rapeseed quality

Procedia PDF Downloads 338
24720 Protection and Renewal Strategies of Historical Blocks from the Perspective of “Staged Authenticity”

Authors: Xu Yingqiang, Wang Zhongde

Abstract:

In the age of stock development, the contradiction between the protection and development of historical blocks in China has become increasingly prominent, among which how to reconcile the contradiction between tourists and local residents and inherit urban culture is an important proposition. Based on this, this paper introduces the theory of " staged authenticity ", combs its development process and related research progress, constructs an analysis and research model of historical blocks based on the theory of " staged authenticity ", and puts forward the protection and renewal strategy of historical blocks from the perspective of " staged authenticity ", which provides theoretical basis for coordinating the tourism-residence contradiction and protecting urban characteristics in the protection and renewal of historical blocks. The research holds that we should pay attention to the important value of "curtain" space, rationally arrange "curtain" and divide "foreground" and "background"; extract "props" from real history and culture to restore the authenticity of "stage" scenes; clever arrangement of tour streamline, so that all scenes are connected in series rhythmically; make the "actors" perform interactively in the "foreground" space, so as to enhance the "audience" sense of scene substitution.

Keywords: historic block, protection and renewal, staged authenticity, curtain

Procedia PDF Downloads 63
24719 Increasing Yam Production as a Means of Solving the Problem of Hunger in Nigeria

Authors: Samual Ayeni, A. S. Akinbani

Abstract:

At present when the price of petroleum is going down beyond bearable level, there is a need to diversify the economy towards arable crop production since Nigeria is an agrarian country. Yam plays prominent role in solving the problem of hunger in Nigeria. There is scarcity of information on the effect of fertilizers in increasing the yield of yam and maintaining soil properties in South Western Nigeria. This study was therefore set up to determine fertilizer effect on properties and yield of yam. The experiment was conducted at Adeyemi College of Education Teaching and Research Farm to compare the effect of organic, Organomineral and mineral fertilizers on yield of yam. Ten treatments were used 10t/ha Wood Ash, 10t/ha Cattle Dung, 10t/ha Poultry Manure, 10t/ha Manufactured Organic, 10t/ha Organomineral Fertilizer, 400kg/ha NPK, 400kg/ha SSP, 400kg/ha Urea and control with treatment. The treatments were laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Compared with control, Organomineral fertilizer significantly (P < 0.05) increased the soil moisture content, poultry manure, wood ash significantly decreased (< 0.05) the bulk density. Application of 10t/ha Organomineral fertilizer recorded the highest increase in the yield of yam among the treatments.

Keywords: organomineral fertilizer, organic fertilizer, SSP, bulk density

Procedia PDF Downloads 295
24718 Analysis of Nutritional Value for Soybean Genotypes Grown in Lesotho

Authors: Motlatsi Eric Morojele, Moleboheng Patricia Lekota, Pulane Nkhabutlane, Motanyane Stanley Motake

Abstract:

Soybean was introduced in Lesotho to increase the spectrum of nutritious foods, especially protein, oil and carbohydrates. However, since then, determination of nutritional value has not been performed, hence this study. The objective of the study was to distinguish soybean genotypes on the basis of nutritive value. The experiment was laid out using a Randomized Complete Block Design with 27 treatments (genotypes) and three replications. Compound fertilizer 2:3:2 (22) was broadcasted over the experimental plot at the rate of 250kg ha-1. Dimensions of the main experimental plot were 135m long and 10m wide, with each sub-plot being 4m and 3.6m. Inter-row and intra-row spacing were 0.9m and 0.20m, respectively. Samples of seeds from each plot were taken to the laboratory to analyze protein content, ash, ca, mg, fiber, starch and ether extract. There were significant differences (P>0.05) among 28 soybean genotypes for protein content, acid detergent fiber, calcium, magnesium and ash. The soybean cultivars with the highest amount of protein were P48T48R, PAN 1663 and PAN 155R. High ADF content was expressed by PAN 1521R. LS 6868 exhibited the highest value of 0.788mg calcium, and the cultivars with the highest magnesium were NA 5509 with 1.306mg. PAN 1663, LCD 5.9, DM5302 RS and NS 6448R revealed higher nutritional values than other genotypes.

Keywords: genotypes, Lesotho, nutritive value, proximate analysis, soya-bean

Procedia PDF Downloads 23
24717 HydroParks: Directives for Physical Environment Interventions Battling Childhood Overweight in Berlin, Germany

Authors: Alvaro Valera Sosa

Abstract:

Background: In recent years, childhood overweight and obesity have become an increasing and challenging phenomenon in Berlin and Germany in general. The highest shares of childhood overweight in Berlin are district localities within the inner city ring with lowest socio-economic levels and the highest number of migration background populations. Most factors explaining overweight and obesity are linked to individual dispositions and nutrition balances. Among various strategies, to target drinking behaviors of children and adolescents has been proven to be effective. On the one hand, encouraging the intake of water – which does not contain energy and thus may support a healthy weight status – on the other hand, reducing the consumption of sugar-containing beverages – which are linked to weight gain and obesity. Anyhow, these preventive approaches have mostly developed into individual or educational interventions widely neglecting environmental modifications. Therefore, little is known on how urban physical environment patterns and features can act as influence factors for childhood overweight. Aiming the development of a physical environment intervention tackling children overweight, this study evaluated urban situations surrounding public playgrounds in Berlin where the issue is evident. It verified the presence and state of physical environmental conditions that can be conducive for children to engage physical activity and water intake. Methods: The study included public playgrounds for children from 0-12 y/o within district localities with the highest prevalence of childhood overweight, highest population density, and highest mixed uses. A systematic observation was realized to describe physical environment patterns and features that may affect children health behavior leading to overweight. Neighborhood walkability for all age groups was assessed using the Walkability for Health framework (TU-Berlin). Playground physical environment conditions were evaluated using Active Living Research assessment sheets. Finally, the food environment in the playground’s pedestrian catchment areas was reviewed focusing on: proximity to suppliers offering sugar-containing beverages, and physical access for 5 y/o children and up to drinking water following the Drinking Fountains and Public Health guidelines of the Pacific Institute. Findings: Out of 114 locations, only 7 had a child population over 3.000. Three with the lowest socio-economic index and highest percentage of migration background were selected. All three urban situations presented similar walkability: large trafficked avenues without buffer bordering at least one side of the playground, and important block to block disconnections for active travel. All three playgrounds rated equipment conditions from good to very good. None had water fountains at the reach of a 5 y/o. and all presented convenience stores and/or fast food outlets selling sugar-containing beverages nearby the perimeter. Conclusion: The three playground situations selected are representative of Berlin locations where most factors that influence children overweight are found. The results delivered urban and architectural design directives for an environmental intervention, used to study children health-related behavior. A post-intervention evaluation could prove associations between designed spaces and children overweight rate reduction creating a precedent in public health interventions and providing novel strategies for the health sector.

Keywords: children overweight, evaluation research, public playgrounds, urban design, urban health

Procedia PDF Downloads 158
24716 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function

Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana

Abstract:

Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.

Keywords: HSV space, histology, enhancement, image

Procedia PDF Downloads 328
24715 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 177
24714 Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project

Authors: Yeongseon Jang, Rhim Ryoo, Young-Ae Park, Kang-Hyeon Ka, Donha Choi, Sung-Suk Lee

Abstract:

Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety.

Keywords: Lentinula edodes, mono-mono hybridization, new cultivar, oak mushroom

Procedia PDF Downloads 345
24713 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 74
24712 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 475
24711 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 533
24710 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 92
24709 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 241
24708 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 403
24707 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 231