Search results for: automatic recognition of speech
1931 An Observation Approach of Reading Order for Single Column and Two Column Layout Template
Authors: In-Tsang Lin, Chiching Wei
Abstract:
Reading order is an important task in many digitization scenarios involving the preservation of the logical structure of a document. From the paper survey, it finds that the state-of-the-art algorithm could not fulfill to get the accurate reading order in the portable document format (PDF) files with rich formats, diverse layout arrangement. In recent years, most of the studies on the analysis of reading order have targeted the specific problem of associating layout components with logical labels, while less attention has been paid to the problem of extracting relationships the problem of detecting the reading order relationship between logical components, such as cross-references. Over 3 years of development, the company Foxit has demonstrated the layout recognition (LR) engine in revision 20601 to eager for the accuracy of the reading order. The bounding box of each paragraph can be obtained correctly by the Foxit LR engine, but the result of reading-order is not always correct for single-column, and two-column layout format due to the table issue, formula issue, and multiple mini separated bounding box and footer issue. Thus, the algorithm is developed to improve the accuracy of the reading order based on the Foxit LR structure. In this paper, a creative observation method (Here called the MESH method) is provided here to open a new chance in the research of the reading-order field. Here two important parameters are introduced, one parameter is the number of the bounding box on the right side of the present bounding box (NRight), and another parameter is the number of the bounding box under the present bounding box (Nunder). And the normalized x-value (x/the whole width), the normalized y-value (y/the whole height) of each bounding box, the x-, and y- position of each bounding box were also put into consideration. Initial experimental results of single column layout format demonstrate a 19.33% absolute improvement in accuracy of the reading-order over 7 PDF files (total 150 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 72%. And for two-column layout format, the preliminary results demonstrate a 44.44% absolute improvement in accuracy of the reading-order over 2 PDF files (total 18 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 0%. Until now, the footer issue and a part of multiple mini separated bounding box issue can be solved by using the MESH method. However, there are still three issues that cannot be solved, such as the table issue, formula issue, and the random multiple mini separated bounding boxes. But the detection of the table position and the recognition of the table structure are out of the scope in this paper, and there is needed another research. In the future, the tasks are chosen- how to detect the table position in the page and to extract the content of the table.Keywords: document processing, reading order, observation method, layout recognition
Procedia PDF Downloads 1811930 Performance Evaluation of Arrival Time Prediction Models
Abstract:
Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.Keywords: bus transit, arrival time prediction, link-based, path-based
Procedia PDF Downloads 3591929 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 2591928 Developmental Psycholinguistic Approach to Conversational Skills: A Continuum of the Sensitivity to Gricean Maxims
Authors: Zsuzsanna Schnell, Francesca Ervas
Abstract:
Background: Our experimental pragmatic study confirms a basic tenet in the Relevance of theoretical views in language philosophy. It draws up a developmental trajectory of the maxims, revealing the cognitive difficulty of their interpretation, their relative place to each other, and the order they may follow in development. A central claim of the present research is that social-cognitive skills play a significant role in inferential meaning construction. Children passing the False Belief Test are significantly more successful in tasks measuring the recognition of the infringement of conversational maxims. Aims and method: We examine preschoolers' conversational and pragmatic competence in view of their mentalization skills. To do so, we use a measure of linguistic tasks containing 5 short scenarios for each Gricean maxim. We measure preschoolers’ ToM performance with a first- and second-order ToM task and compare participants’ ability to recognize the infringement of the Gricean maxims in view of their social cognitive skills. Results: Findings suggest that Theory of Mind has a predictive force of 75% concerning the ability to follow Gricean maxims efficiently. ToM proved to be a significant factor in predicting the group’s performance and success rates in 3 out of 4 maxim infringement recognition tasks: in the Quantity, Relevance and Manner conditions, but not in the Quality trial. Conclusions: Our results confirm that children’s communicative competence in social contexts requires the development of higher-order social-cognitive reasoning. They reveal the cognitive effort needed to recognize the infringement of each maxim, yielding a continuum of their cognitive difficulty and trajectory of development.Keywords: developmental pragmatics, social cognition, preschoolers, maxim infringement, Gricean pragmatics
Procedia PDF Downloads 301927 [Keynote Speech]: An Overview on the Effectiveness of Critical Thinking on Knowledge
Authors: Solehah Yaacob
Abstract:
The study focuses on revisiting the effectiveness of Critical Thinking in human mind capability as a major faculty in human life. The tool used as a measurement of this knowledge ability consists of several processes including experience and education background. To emphasize the `Overview` concept, the researcher highlights two major aspects of philosophical approach, they are; Divine Revelation Concept and Modern Scientific Theory. The research compares between the both parties to introduce the Divine Revelation into Modern Scientific theory. An analytical and critical study of the both concepts become the methodology of the discussion.Keywords: critical thinking, knowledge, intellectual, language
Procedia PDF Downloads 4381926 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1561925 Structure and Dimensions Of Teacher Professional Identity
Authors: Vilma Zydziunaite, Gitana Balezentiene, Vilma Zydziunaite
Abstract:
Teaching is one of most responsible profession, and it is not only a job of an artisan. This profes-sion needs a developed ability to identify oneself with the chosen teaching profession. Research questions: How teachers characterize their authentic individual professional identity? What factors teachers exclude, which support and limit the professional identity? Aim was to develop the grounded theory (GT) about teacher’s professional identity (TPI). Research methodology is based on Charmaz GT version. Data were collected via semi-structured interviews with the he sample of 12 teachers. Findings. 15 extracted categories revealed that the core of TPI is teacher’s professional calling. Premises of TPI are family support, motives for choos-ing teacher’s profession, teacher’s didactic competence. Context of TPI consists of teacher compli-ance with the profession, purposeful preparation for pedagogical studies, professional growth. The strategy of TPI is based on teacher relationship with school community strengthening. The profes-sional frustration limits the TPI. TPI outcome includes teacher recognition, authority; professional mastership, professionalism, professional satisfaction. Dimensions of TPI GT the past (reaching teacher’s profession), present (teacher’s commitment to professional activity) and future (teacher’s profession reconsideration). Conclusions. The substantive GT describes professional identity as complex, changing and life-long process, which develops together with teacher’s personal identity and is connected to professional activity. The professional decision "to be a teacher" is determined by the interaction of internal (professional vocation, personal characteristics, values, self-image, talents, abilities) and external (family, friends, school community, labor market, working condi-tions) factors. The dimensions of the TPI development includes: the past (the pursuit of the teaching profession), the present (the teacher's commitment to professional activity) and the future (the revi-sion of the teaching profession). A significant connection emerged - as the teacher's professional commitment strengthens (creating a self-image, growing the teacher's professional experience, recognition, professionalism, mastery, satisfaction with pedagogical activity), the dimension of re-thinking the teacher's profession weakens. This proves that professional identity occupies an im-portant place in a teacher's life and it affects his professional success and job satisfaction. Teachers singled out the main factors supporting a teacher's professional identity: their own self-image per-ception, professional vocation, positive personal qualities, internal motivation, teacher recognition, confidence in choosing a teaching profession, job satisfaction, professional knowledge, professional growth, good relations with the school community, pleasant experiences, quality education process, excellent student achievements.Keywords: grounded theory, teacher professional identity, semi-structured interview, school, students, school community, family
Procedia PDF Downloads 741924 [Keynote Speech]: Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS
Authors: Noor Attar
Abstract:
The paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of persons living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones. Procedia PDF Downloads 3121923 Short Association Bundle Atlas for Lateralization Studies from dMRI Data
Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara
Abstract:
Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.Keywords: dMRI, hierarchical clustering, lateralization index, tractography
Procedia PDF Downloads 3311922 Modeling False Statements in Texts
Authors: Francielle A. Vargas, Thiago A. S. Pardo
Abstract:
According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.Keywords: deception detection, linguistics style, computational linguistics, natural language processing
Procedia PDF Downloads 2181921 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials
Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova
Abstract:
Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system
Procedia PDF Downloads 4061920 Pragmatic Survey of Precedence as Linguistic 'Déjà Vu' in Political Text and Talk
Authors: Zarine Avetisyan
Abstract:
Both in language and literature there exists the theory of recurrence of text and talk chunks which brings us to the notion of precedence. It must be stated that precedence as a pragma-linguistic phenomenon is yet underknown and it is the main objective of the present research to revisit and reveal it thoroughly. In line with the main research objective, analysis of political text and talk provides abundant relevant data for the illustration of the phenomenon of precedence. The analysis focuses on certain pragmatic universals (e.g. intention) and categories (e.g. speech techniques) which lead to the disclosure of the present object of study.Keywords: intention, precedence, political discourse, pragmatic universals
Procedia PDF Downloads 4301919 Improving Patient Outcomes for Aspiration Pneumonia
Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu
Abstract:
Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions
Procedia PDF Downloads 621918 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling
Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer
Abstract:
The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor
Procedia PDF Downloads 2821917 Corporate Governance in Higher Education: A South African Perspective
Authors: Corlia van der Walt, Michele K. Havenga
Abstract:
The study considers corporate governance regulation and practice in South African higher education institutions and makes recommendations for the improvement of current governance practices in this sector. The development of corporate governance principles and practices in South Africa, culminating in the King IV Report on Corporate Governance which was launched in November 2016, is discussed. King IV enjoys international recognition as a progressive corporate governance instrument. It was necessitated by the fundamental changes in business and society nationally and globally, as well as by the significant changes to South African company law introduced by new legislation. Corporate governance and the corporate form are narrowly associated, but there is general recognition that the principles of ethical and effective leadership are not restricted to corporations. Thus King IV was drafted with the express aim that it should apply to all organisations, regardless of their form of incorporation, and the report includes specific sector supplements in support of this aspiration. The South African higher education sector has of late been under intense scrutiny, and a few universities have been placed under administration because of poor governance practices. Universities have also been severely impacted by the consequences of what is generally known as ‘#FeesmustFall’, a student led protest movement initially aimed against the increase of fees at public universities, but which rapidly expanded to also include other concerns. It was clearly necessary to revisit corporate governance policy and practice in the sector. The review of the current higher education governance regime in light of the King IV recommendations, lessons from company law regarding the entrenchment and enforcement of corporate governance principles, and a comparison of higher education governance practices in selected other jurisdictions led to recommendations for the improvement of governance practices in South African higher education. It is further suggested that a sector supplement for higher education institutions may provide additional clarity. Some of the recommendations may be of comparative value for international higher education governance.Keywords: committees, corporate governance, ethical leadership, higher education institutions, integrated reporting, King IV, sector supplements, sustainability
Procedia PDF Downloads 4081916 The Impact of an Educational Program on Knowledge, Attitude and Practices of Healthcare Professionals towards Family Presence during Resuscitation in an Emergency Department at a Tertiary Care Setting, in Karachi, Pakistan
Authors: Shaista Meghani, Rozina Karmaliani, Khairulnissa Ajani, Shireen Shahzad, Nadeem Ullah Khan
Abstract:
Background: The concept of Family Presence During Resuscitation (FPDR) is gradually gaining recognition in western countries, however, it is rarely considered in South Asian countries including Pakistan. Over time, patients’ and families’ rights have gained recognition and healthcare has progressed to become more patient-family centered. Objectives: The objective of this study was to evaluate the impact of an educational program on the Knowledge, Attitude, and Practices (KAP) of healthcare professionals (HCPs) towards FPDR in Emergency Department (ED), at a tertiary care setting, in Karachi, Pakistan. Methods: This was a Pre-test and Post-test study design. A convenient universal sampling was done, and all ED nurses and physicians with more than one year of experience were eligible. The intervention included one-hour training sessions for physicians (three sessions) and nurses (eight sessions), The KAP of nurses and physicians were assessed immediately after (post-test I), and two weeks(post-test II) after the intervention using a pretested questionnaire. Results: The findings of the study revealed that the mean scores of knowledge and attitude of HCPs at both time points were statistically significant (p-value=<0.001), however, an insignificant difference was found on practice of FPDR (p-value=>0.05). Conclusion: The study findings recommend that the educational program on FPDR for HCPs needs to be offered on an ongoing basis. Moreover, training modules need to be developed for the staff, and formal guidelines need to be proposed for FPDR, through a multidisciplinary team approach.Keywords: family presence, cardiopulmonary resuscitation, attitude, education, practices, health care professionals
Procedia PDF Downloads 1871915 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2671914 Fallacies of Argumentation in Modern American Political Discourse
Authors: Zarine Avetisyan
Abstract:
The process of speech production and transmission naturally implies the occurrence of certain defective assumptions and erroneous formulations which may be both spontaneous, caused by haste, carelessness, etc., or deliberate. Whether deliberate or not, fallacies always act by way of “faux pas”. In the latter case, we deal with fake or deceptive arguments which are the focus of the given paper. The paper departs from the assumption that fallacies are arguments that prove nothing. Additionally and more importantly, political discourse becomes the main domain for scholarly “cultivation” while pinning down fallacies. The fallacy of telling the truth but deliberately omitting important key details in order to falsify the larger picture called “the half truth” captures special attention in the given paper.Keywords: break in the information chain, fallacy, half truth, political discourse
Procedia PDF Downloads 3921913 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design
Procedia PDF Downloads 4371912 Code Switching and Code Mixing among Adolescents in Kashmir
Authors: Sarwat un Nisa
Abstract:
One of the remarkable gifts that a human being is blessed with is the ability to speak using a combination of sounds. Different combinations of sounds combine to form a word which in turn make a sentence and therefore give birth to a language. A person can either be a monolingual, i.e., can speak one language or bilingual, i.e., can speak more than one language. Whether a person speaks one language or multiple languages or in whatever language a person speaks, the main aim is to communicate, express ideas, feelings or thoughts. Sometimes the choice of a language is deliberate and sometimes it is a habitual act. The language which is used to put our ideas across speaks many things about our cultural, linguistic and ethnic identities. It can never be claimed that bilinguals are better than monolinguals in terms of linguistic skills, bilinguals or multilinguals have more than one language at their disposal. Therefore, how effectively two languages are used by the same person keeps linguists always intrigued. The most prominent and common features found in the speech of bilingual speakers are code switching and code mixing. The aim of the present paper is to explore these features among the adolescent speakers of Kashmir. The reason for studying the linguistics behavior of adolescents is the age when a person is neither an adult nor a child. They want to drift away from the norms and make a new norm for themselves. Therefore, how their linguistics skills are influenced by their age is of great interest because it can set the trend for the future generation. Kashmir is a multilingual society where three languages, i.e., Kashmiri, Urdu, and English are regularly used by the speakers, especially the educated ones. Kashmiri is widely used at home or mostly among adults. Urdu is the official language, and English is used in schools and for most of the written official correspondences. Thus, it is not uncommon to find these three languages coming in contact with each other quite frequently. The language contact results in the code switching and code mixing. In this paper different aspects of code switching and code mixing are discussed. Research Method: The data were collected from the different districts of Kashmir. The informants did not have prior knowledge of the survey. The situation was spontaneous and natural. The topics were introduced by the interviewer to the group of informants which comprised of three participants. They were asked to discuss the topic, most of the times without any intervention of the interviewer. Along with conversations, the informants also filled in written questionnaires comprising sociolinguistic questions. Questionnaires were analysed to get an idea about the sociolinguistic attitude of the informants. Percentage, frequency, and average were used as statistical tools to analyse the data. Conclusions were drawn taking into consideration of interpretations of both speech samples and questionnaires.Keywords: code mixing, code switching, Kashmir, bilingualism
Procedia PDF Downloads 1441911 Investigating the Effect of Metaphor Awareness-Raising Approach on the Right-Hemisphere Involvement in Developing Japanese Learners’ Knowledge of Different Degrees of Politeness
Authors: Masahiro Takimoto
Abstract:
The present study explored how the metaphor awareness-raising approach affects the involvement of the right hemisphere in developing EFL learners’ knowledge regarding the different degrees of politeness embedded within different request expressions. The present study was motivated by theoretical considerations regarding the conceptual projection and the metaphorical idea of politeness is distance, as proposed; this study applied these considerations to develop Japanese learners’ knowledge regarding the different politeness degrees and to explore the connection between the metaphorical concept projection and right-hemisphere dominance. Japanese EFL learners do not know certain language strategies (e.g., English requests can be mitigated with biclausal downgraders, including the if-clause with past-tense modal verbs) and have difficulty adjusting the politeness degrees attached to request expressions according to situations. The present study used a pre/post-test design to reaffirm the efficacy of the cognitive technique and its connection to right-hemisphere involvement by mouth asymmetry technique. Mouth asymmetry measurement has been utilized because speech articulation, normally controlled mainly by one side of the brain, causes muscles on the opposite side of the mouth to move more during speech production. The present research did not administer the delayed post-test because it emphasized determining whether metaphor awareness-raising approaches for developing EFL learners’ pragmatic proficiency entailed right-hemisphere activation. Each test contained an acceptability judgment test (AJT) along with a speaking test in the post-test. The study results show that the metaphor awareness-raising group performed significantly better than the control group with regard to acceptability judgment and speaking tests post-test. These data revealed that the metaphor awareness-raising approach could promote L2 learning because it aided input enhancement and concept projection; through these aspects, the participants were able to comprehend an abstract concept: the degree of politeness in terms of the spatial concept of distance. Accordingly, the proximal-distal metaphor enabled the study participants to connect the newly spatio-visualized concept of distance to the different politeness degrees attached to different request expressions; furthermore, they could recall them with the left side of the mouth being wider than the right. This supported certain findings from previous studies that indicated the possible involvement of the brain's right hemisphere in metaphor processing.Keywords: metaphor awareness-raising, right hemisphere, L2 politeness, mouth asymmetry
Procedia PDF Downloads 1541910 Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages
Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas
Abstract:
The aim of the study is to compare behaviorally and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All participants completed a linguistic task, in which they had to find a syntax error in the written sentences. Russian participants completed the task in Russian and in English. Tuvinian and Yakut participants completed the task in Russian, English, and Tuvinian or Yakut, respectively. EEG’s were recorded during the solving of tasks. For Russian participants, EEG's were recorded using 128-channels. The electrodes were placed according to the extended International 10-10 system, and the signals were amplified using ‘Neuroscan (USA)’ amplifiers. For Tuvinians and Yakuts EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups 0.3-100 Hz analog filtering, sampling rate 1000 Hz were used. Response speed and the accuracy of recognition error were used as parameters of behavioral reactions. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The accuracy of solving tasks and response speed in Russians were higher for Russian than for English. The P300 amplitudes in Russians were higher for English; the P600 amplitudes in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages (Tuvinian and Yakut). However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. With Tuvinians, there were no differences in the P300 and P600 amplitudes and in cortical topology for Russian and Tuvinian, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference and were reflected foreign language comprehension -while the Russian language comprehension was reflected native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.Keywords: EEG, language comprehension, native and foreign languages, Siberian inhabitants
Procedia PDF Downloads 5321909 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 821908 Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene
Authors: Srishty Gulati, Anju Singh, Shrikant Kukreti
Abstract:
The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene.Keywords: base-substitution, catechol-o-methyltransferase (COMT), hairpin-DNA, structural polymorphism
Procedia PDF Downloads 1221907 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement
Authors: Brittany Richardson, Ying Wang
Abstract:
For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments
Procedia PDF Downloads 1341906 Migration Law in Republic of Panama
Authors: Ronel Solis, Leonardo Collado
Abstract:
Migration law in the Republic of Panama has been regulated mainly by the executive branch. This has created a crisis not only institutional but also social because the evolution of these norms has rested greatly from the discretion of the government in office. This has created instability in immigration regulation and more now, with the migration crisis of which Panama is also part. Different migration policies have been established. The most recent is that of the controlled migration flow, in which, for humanitarian reasons, migrants move from the border with Colombia to the border with Costa Rica. Unfortunately, such control is not enough, and in some cases, unprotected migrants have been confined for months, their passports have been withheld, and no recognition of their rights is offered. The Inter-American Court of Human Rights has condemned Panama for the unfair detention of an irregular migrant, who was detained for two years in Panamanian prisons, without having committed a crime and without accessing a just defense. This is the case Vélez Loor vs. the Republic of Panama. Uncontrollable migration has been putting pressure on Panamanian public health services. The recent denunciation of HIV-related NGOs that warns that there are hundreds of foreigners who receive expensive antiretroviral therapy in Panama is serious, and several of them are irregular migrants. On the other hand, there are no border control posts with the Republic of Colombia, because it is a jungle area and migrants are exposed to arms and drug trafficking, and unfortunately, also to prostitution. Government entities such as the border police service have provided humanitarian support to migrants on the border with Colombia, although it is not their administrative function, and various entities discuss who should address this crisis. However, few economic resources are allocated by the government to solve this problem, especially with the recent mass migration of Venezuelans who have fled their country. The establishment of a migratory normative code is necessary to establish uniformity in the recognition and application of migratory rights. In this way, dependence on the changing migration policies of the different Panamanian governments would be eliminated, and the rights of migrants and nationals would be guaranteed.Keywords: executive branch, irregular migration, migration code, Republic of Panama
Procedia PDF Downloads 1231905 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1221904 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning
Procedia PDF Downloads 5291903 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1291902 Implications of Humanizing Pedagogy on Learning Design in a Technology-Enhanced Language Learning Environment: Critical Reflections on Student Identity and Agency
Authors: Mukhtar Raban
Abstract:
Nelson Mandela University subscribes to a humanizing pedagogy (HP), as housed under broader critical pedagogy, that underpins and informs learning and teaching activities at the institution. The investigation sought to explore the implications of humanizing and critical pedagogical considerations for a technology-enhanced language learning (TELL) environment in a university course. The paper inquires into the design of a learning resource in an online learning environment of an English communication module, that applied HP principles. With an objective of creating agentive spaces for foregrounding identity, student voice, critical self-reflection, and recognition of others’ humanity; a flexible and open 'My Presence' feature was added to the TELL environment that allowed students and lecturers to share elements of their backgrounds in a ‘mutually vulnerable’ manner as a way of establishing digital identity and a more ‘human’ presence in the online language learning encounter, serving as a catalyst for the recognition of the ‘other’. Following a qualitative research design, the study adopted an auto-ethnographic approach, complementing the critical inquiry nature embedded into the activity’s practices. The study’s findings provide critical reflections and deductions on the possibilities of leveraging digital human expression within a humanizing pedagogical framework to advance the realization of HP-adoption in language learning and teaching encounters. It was found that the consideration of humanizing pedagogical principles in the design of online learning was more effective when the critical outcomes were explicated to students and lecturers prior to the completion of the activities. The integration of humanizing pedagogy also led to a contextual advancement of ‘affective’ language learning. Upon critical reflection and analysis, student identity and agency can flourish in a technology-enhanced learning environment when humanizing, and critical pedagogy influences the learning design.Keywords: critical reflection, humanizing pedagogy, student identity, technology-enhanced language learning
Procedia PDF Downloads 135