Search results for: active learning approach
20598 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 23120597 The Effects of the Inference Process in Reading Texts in Arabic
Authors: May George
Abstract:
Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language, i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predict the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.Keywords: inference, reading, Arabic, language acquisition
Procedia PDF Downloads 53120596 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?
Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria
Abstract:
Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state
Procedia PDF Downloads 30620595 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 5220594 Exploring the Potential of Mobile Learning in Distance Higher Education: A Case Study of the University of Jammu, Jammu, and Kashmir
Authors: Darshana Sharma
Abstract:
Distance Education has emerged as a viable alternative to serve the higher educational needs of the socially and economically disadvantaged people of the remote, rural areas of Jammu region. The University of Jammu is a National Accreditation, and Assessment Council accredited, A+ university and has been accorded graded autonomy by the University Grants Commission. It is a dual mode university offering academic programmes through the regular departments and through the Directorate of Distance Education. The Directorate of Distance Education, University of Jammu still uses printed study material as a mode of instructional delivery. The development of technologies has assured increased interaction and communication for distance learners throughout the distance open learning institutions. Though it is tempting and convenient to adopt technology already being used by others, it may not prove effective for the simple reason that two institutions may be unlike in some respect. The use of technology must be conceived in view of the needs of the learners; geographical socio-economic-cultural and technological contexts and financial, administrative and academic resources of the institution. Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. It has evolved as one of the useful channels of distance learning promoting interaction between learners and teachers. It is felt that the Directorate of Distance Education, University of Jammu also needs to adopt new technologies to provide more effective academic and information support to distance learners in order to keep them motivated and also to develop self-learning skills. The chief objective of the research on which this paper is based was to measure the opinion of the distance learners of the DDE, the University of Jammu about the merits of mobile learning. It also explores their preferences for implementing mobile learning. The survey research design of descriptive research has been used. The data was collected from 400 distance learners enrolled with undergraduate and post-graduate programmes using self-constructed questionnaire containing five-point Likert scale items arranging from strongly agree, agree, indifferent, disagree and strongly disagree. Percentages were used to analyze the data. The findings lead to conclude that mobile learning has a great potential for the DDE for reaching out to the rural, remotely located distance learners of the Jammu region and also to improve the teaching-learning environment. The paper also finds out the challenges in the implementation of mobile learning in the region and further makes suggestions for effective implementation of mobile learning in DDE, University of Jammu.Keywords: directorate of distance education, mobile learning, national accreditation and assessment council, university of Jammu
Procedia PDF Downloads 12320593 Teaching Buddhist Meditation: An Investigation into Self-Learning Methods
Authors: Petcharat Lovichakorntikul, John Walsh
Abstract:
Meditation is in the process of becoming a globalized practice and its benefits have been widely acknowledged. The first wave of internationalized meditation techniques and practices was represented by Chan and Zen Buddhism and a new wave of practice has arisen in Thailand as part of the Phra Dhammakaya temple movement. This form of meditation is intended to be simple and straightforward so that it can easily be taught to people unfamiliar with the basic procedures and philosophy. This has made Phra Dhammakaya an important means of outreach to the international community. One notable aspect is to encourage adults to become like children to perform it – that is, to return to a naïve state prior to the adoption of ideology as a means of understanding the world. It is said that the Lord Buddha achieved the point of awakening at the age of seven and Phra Dhammakaya has a program to teach meditation to both children and adults. This brings about the research question of how practitioners respond to the practice of meditation and how should they be taught? If a careful understanding of how children behave can be achieved, then it will help in teaching adults how to become like children (albeit idealized children) in their approach to meditation. This paper reports on action research in this regard. Personal interviews and focus groups are held with a view to understanding self-learning methods with respect to Buddhist meditation and understanding and appreciation of the practices involved. The findings are considered in the context of existing knowledge about different learning techniques among people of different ages. The implications for pedagogical practice are discussed and learning methods are outlined.Keywords: Buddhist meditation, Dhammakaya, meditation technique, pedagogy, self-learning
Procedia PDF Downloads 47820592 Strategies for Improving and Sustaining Quality in Higher Education
Authors: Anshu Radha Aggarwal
Abstract:
Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.Keywords: learning outcomes, curriculum development, pedagogy, outcome based education
Procedia PDF Downloads 52420591 Understanding Learning Styles of Hong Kong Tertiary Students for Engineering Education
Authors: K. M. Wong
Abstract:
Engineering education is crucial to technological innovation and advancement worldwide by generating young talents who are able to integrate scientific principles and design practical solutions for real-world problems. Graduates of engineering curriculums are expected to demonstrate an extensive set of learning outcomes as required in international accreditation agreements for engineering academic qualifications, such as the Washington Accord and the Sydney Accord. On the other hand, students have different learning preferences of receiving, processing and internalizing knowledge and skills. If the learning environment is advantageous to the learning styles of the students, there is a higher chance that the students can achieve the intended learning outcomes. With proper identification of the learning styles of the students, corresponding teaching strategies can then be developed for more effective learning. This research was an investigation of learning styles of tertiary students studying higher diploma programmes in Hong Kong. Data from over 200 students in engineering programmes were collected and analysed to identify the learning characteristics of students. A small-scale longitudinal study was then started to gather academic results of the students throughout their two-year engineering studies. Preliminary results suggested that the sample students were reflective, sensing, visual, and sequential learners. Observations from the analysed data not only provided valuable information for teachers to design more effective teaching strategies, but also provided data for further analysis with the students’ academic results. The results generated from the longitudinal study shed light on areas of improvement for more effective engineering curriculum design for better teaching and learning.Keywords: learning styles, learning characteristics, engineering education, vocational education, Hong Kong
Procedia PDF Downloads 26420590 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 14120589 The Use of Mobile Applications for Language Learning in 21st-Century Teacher Education for Sustainable Development in Africa
Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis
Abstract:
The need for ICT in Teacher Education due to the nature of 21st-century learners who are computer citizens is essential. The recent increase in the use of Mobile phones has equally revealed the importance of Mobile Applications for learning purposes. However, teacher-trainees and the trainers need to be well-grounded in basic ICT skills for an appropriate outcome. This study seeks to assess the use of Mobile Applications for language learning in Teacher Education teaching-learning process. A 22-item e-questionnaire was used to elicit information from teacher-trainers and teachers-trainees from Faculties of Education in Nigerian Universities. Major findings of this study include: That teacher-education sector is not adequately prepared for manipulative use of ICT and Mobile Applications for teaching and learning process; etc. It was recommended among others that, teacher-trainers should be trained and re-trained on the manipulative use of Mobile devices and the several applications for teaching-learning purpose, especially language education.Keywords: information and communications technology, ICT, language learning, mobile application, sustainable development, teacher education
Procedia PDF Downloads 16620588 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems
Procedia PDF Downloads 36420587 A Review of Applying Serious Games on Learning
Authors: Carlos Oliveira, Ulrick Pimentel
Abstract:
Digital games have conquered a growing space in the lives of children, adolescents and adults. In this perspective, the use of this resource has shown to be an important strategy that facilitates the learning process. This research is a literature review on the use of serious games in teaching, which shows the characteristics of these games, the benefits and possible harms that this resource can produce, in addition to the possible methods of evaluating the effectiveness of this resource in teaching. The results point out that Serious Games have significant potential as a tool for instruction. However, their effectiveness in terms of learning outcomes is still poorly studied, mainly due to the complexity involved in evaluating intangible measures.Keywords: serious games, learning, application, literature review
Procedia PDF Downloads 31020586 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 29120585 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project
Authors: Dorit Alt, Nirit Raichel
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling
Procedia PDF Downloads 31520584 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study
Authors: M. Hadavi, Z. Hashemi
Abstract:
Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.Keywords: vocabulary leaning strategies, medical sciences, students, linguistics
Procedia PDF Downloads 45120583 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: S. Anuradha, V. Sandeep Kumar
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension
Procedia PDF Downloads 44720582 The Role of Gender in English Language Acquisition for Chinese Medical Students
Authors: Christopher Celozzi, Sarah Kochav
Abstract:
Our research investigates the numerous challenges faced by Chinese ESL university students enrolled in the medical and related healthcare professional fields. The over-arching research question is how gender influences classroom participation and learning. The second research question addressed is 'what instructional strategies may be utilized to promote student participation and language acquisition?'. Participants’ language ability has been assessed and evaluated in order to facilitate the establishment of a statistical baseline for the subsequent intervention. This research delves deeper into each individual’s personal and academic circumstances, in an effort to reveal any held intrinsic gender beliefs and social identities that may influence learning. Also considered is the impact on learning for a homogenized student population within a uniform, highly structured learning environment. Specially, what is the influence of China’s ‘one-child policy’ on individual learning habits? The impact of their millennial identity and reliance on social media is also examined. A qualitative methodology with a case study approach is employed, with interviews conducted among the participants. Student response to the intervention and selected remediation strategies are documented, analyzed and discussed. The findings of the study may serve to inform educator instructional practice, while advancing the student learner in their pursuit of English competency in highly competitive professions.Keywords: Chinese students, gender, English, language acquisition
Procedia PDF Downloads 20520581 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: argumentation, dialogue, digital game, learning, motivation
Procedia PDF Downloads 32120580 Seismic Design Approach for Areas with Low Seismicity
Authors: Mogens Saberi
Abstract:
The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures.Keywords: low seismicity, new design approach, earthquakes, Denmark
Procedia PDF Downloads 36520579 An Assessment of Digital Platforms, Student Online Learning, Teaching Pedagogies, Research and Training at Kenya College of Accounting University
Authors: Jasmine Renner, Alice Njuguna
Abstract:
The booming technological revolution is driving a change in the mode of delivery systems especially for e-learning and distance learning in higher education. The report and findings of the study; an assessment of digital platforms, student online learning, teaching pedagogies, research and training at Kenya College of Accounting University (hereinafter 'KCA') was undertaken as a joint collaboration project between the Carnegie African Diaspora Fellowship and input from the staff, students and faculty at KCA University. The participants in this assessment/research met for selected days during a six-week period during which, one-one consultations, surveys, questionnaires, foci groups, training, and seminars were conducted to ascertain 'online learning and teaching, curriculum development, research and training at KCA.' The project was organized into an eight-week project workflow with each week culminating in project activities designed to assess digital online teaching and learning at KCA. The project also included the training of distance learning instructors at KCA and the evaluation of KCA’s distance platforms and programs. Additionally, through a curriculum audit and redesign, the project sought to enhance the curriculum development activities related to of distance learning at KCA. The findings of this assessment/research represent the systematic deliberate process of gathering, analyzing and using data collected from DL students, DL staff and lecturers and a librarian personnel in charge of online learning resources and access at KCA. We engaged in one-on-one interviews and discussions with staff, students, and faculty and collated the findings to inform practices that are effective in the ongoing design and development of eLearning earning at KCA University. Overall findings of the project led to the following recommendations. First, there is a need to address infrastructural challenges that led to poor internet connectivity for online learning, training needs and content development for faculty and staff. Second, there is a need to manage cultural impediments within KCA; for example fears of vital change from one platform to another for effectiveness and Institutional goodwill as a vital promise of effective online learning. Third, at a practical and short-term level, the following recommendations based on systematic findings of the research conducted were as follows: there is a need for the following to be adopted at KCA University to promote the effective adoption of online learning: a) an eLearning compatible faculty lab, b) revision of policy to include an eLearn strategy or strategic management, c) faculty and staff recognitions engaged in the process of training for the adoption and implementation of eLearning and d) adequate website resources on eLearning. The report and findings represent a comprehensive approach to a systematic assessment of online teaching and learning, research and training at KCA.Keywords: e-learning, digital platforms, student online learning, online teaching pedagogies
Procedia PDF Downloads 19120578 Collaborative Learning Aspect for Training Hip and Knee Joint Anatomy
Authors: Nasir Mustafa
Abstract:
One of the prerequisites required for an efficient diagnosis in a medical practice is to have a strong command of both functional and clinical anatomy. In this study, we introduce a new collaborative approach to the effective teaching of the knee and hip joints. In the present teaching model, anatomists, orthopedists and physical therapists present the anatomy of the hip and knee joints in small groups. Courses for the hip and knee joints were scheduled during the early stages of the medical curriculum. Students of nursing and physical therapy were grouped together to sensitize to the importance of a collaborative effort. The study results clearly demonstrate that nursing students and physical therapy students appreciated this teaching approach. The collaborative approach further proved to be a suitable method to teach both functional and clinical anatomy of the hip and knee joints. Aside from this training, a collaborative approach between medical students and physical therapy students was also successful for a healthcare organization.Keywords: hip and knee joint anatomy, collaborative, Anatomy teaching, Nursing students, Physiotherapy students
Procedia PDF Downloads 9320577 Practical Ways to Acquire the Arabic Language through Electronic Means
Authors: Hondozi Jahja
Abstract:
There is an obvious need to learn Arabic language and teach it to other speakers through the new curricula. The idea is to bridge the gap between theory and practice. To that end, we have sought to offer some means of help to master the Arabic language, in addition to our efforts to apply these means, enriching the culture of the student and develop his vocabulary. There is no doubt that taking care of the practical aspect of the grammar was our constant goal, and this particular aspect is what builds the student’s positive values and refine his taste and develop his language. In addressing these issues, we have adopted a school-based approach based primarily on the active and positive participation of the student. The theoretical linguistic issues - in our opinion - are not a primary goal, but the goal is to be used them by students through speaking and applying them. Among the objectives of this research is to establish the basic language skills of the students using new means that help the student to acquire these skills and apply them in various subjects of interest in his progress and development. Unfortunately, some of our students consider the grammar as ‘difficult’, ‘complex’ and ‘heavy’ in itself. This is one of the obstacles that stand in the way of their desired results. As a consequence, they end up talking – mumbling - about the difficulties they face in applying those rules. Therefore, some of our students finish their university studies and are unable to express what they feel using language correctly. For this purpose, we have sought in this research to follow a new integrated approach, which is to study the grammar of the language through modern means of the consolidation of the principle of functional language, and that the rule implies to control tongues and linguistic expressions properly. This research is a result of a practical experience as a teacher of Arabic language for non-native speakers at the ‘Hassan Pristina’ University, located in Pristina, the capital of Kosovo and at the Qatar Training Center since its establishment in 2012.Keywords: arabic, applied methods, acquire, learning
Procedia PDF Downloads 15820576 Promoting Non-Formal Learning Mobility in the Field of Youth
Authors: Juha Kettunen
Abstract:
The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.Keywords: non-formal learning, youth work, social inclusion, innovation
Procedia PDF Downloads 29420575 Using the M-Learning to Support Learning of the Concept of the Derivative
Authors: Elena F. Ruiz, Marina Vicario, Chadwick Carreto, Rubén Peredo
Abstract:
One of the main obstacles in Mexico’s engineering programs is math comprehension, especially in the Derivative concept. Due to this, we present a study case that relates Mobile Computing and Classroom Learning in the “Escuela Superior de Cómputo”, based on the Educational model of the Instituto Politécnico Nacional (competence based work and problem solutions) in which we propose apps and activities to teach the concept of the Derivative. M- Learning is emphasized as one of its lines, as the objective is the use of mobile devices running an app that uses its components such as sensors, screen, camera and processing power in classroom work. In this paper, we employed Augmented Reality (ARRoC), based on the good results this technology has had in the field of learning. This proposal was developed using a qualitative research methodology supported by quantitative research. The methodological instruments used on this proposal are: observation, questionnaires, interviews and evaluations. We obtained positive results with a 40% increase using M-Learning, from the 20% increase using traditional means.Keywords: augmented reality, classroom learning, educational research, mobile computing
Procedia PDF Downloads 36020574 KSVD-SVM Approach for Spontaneous Facial Expression Recognition
Authors: Dawood Al Chanti, Alice Caplier
Abstract:
Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation
Procedia PDF Downloads 30520573 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 3620572 Academic Success, Problem-Based Learning and the Middleman: The Community Voice
Authors: Isabel Medina, Mario Duran
Abstract:
Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.Keywords: phenomenological, STEM education, student engagement, community involvement
Procedia PDF Downloads 9120571 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 17920570 Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study
Authors: Pia Wetzl
Abstract:
The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use.Keywords: blended learning, higher education, teachers, student learning, qualitative research
Procedia PDF Downloads 6920569 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 61