Search results for: critical applied linguistics
1876 Eco-Friendly Softener Extracted from Ricinus communis (Castor) Seeds for Organic Cotton Fabric
Authors: Fisaha Asmelash
Abstract:
The processing of textiles to achieve a desired handle is a crucial aspect of finishing technology. Softeners can enhance the properties of textiles, such as softness, smoothness, elasticity, hydrophilicity, antistatic properties, and soil release properties, depending on the chemical nature used. However, human skin is sensitive to rough textiles, making softeners increasingly important. Although synthetic softeners are available, they are often expensive and can cause allergic reactions on human skin. This paper aims to extract a natural softener from Ricinus communis and produce an eco-friendly and user-friendly alternative due to its 100% herbal and organic nature. Crushed Ricinus communis seeds were soaked in a mechanical oil extractor for one hour with a 100g cotton fabric sample. The defatted cake or residue obtained after the extraction of oil from the seeds, also known as Ricinus communis meal, was obtained by filtering the raffinate and then dried at 1030c for four hours before being stored under laboratory conditions for the softening process. The softener was applied directly to 100% cotton fabric using the padding process, and the fabric was tested for stiffness, crease recovery, and drape ability. The effect of different concentrations of finishing agents on fabric stiffness, crease recovery, and drape ability was also analyzed. The results showed that the change in fabric softness depends on the concentration of the finish used. As the concentration of the finish was increased, there was a decrease in bending length and drape coefficient. Fabrics with a high concentration of softener showed a maximum decrease in drape coefficient and stiffness, comparable to commercial softeners such as silicon. The highest decrease in drape coefficient was found to be comparable with commercial softeners, silicon. Maximum increases in crease recovery were seen in fabrics treated with Ricinus communis softener at a concentration of 30gpl. From the results, the extracted softener proved to be effective in the treatment of 100% cotton fabricKeywords: ricinus communis, crease recovery, drapability, softeners, stiffness
Procedia PDF Downloads 911875 Comparison of the Hospital Patient Safety Culture between Bulgarian, Croatian and American: Preliminary Results
Authors: R. Stoyanova, R. Dimova, M. Tarnovska, T. Boeva, R. Dimov, I. Doykov
Abstract:
Patient safety culture (PSC) is an essential component of quality of healthcare. Improving PSC is considered a priority in many developed countries. Specialized software platform for registration and evaluation of hospital patient safety culture has been developed with the support of the Medical University Plovdiv Project №11/2017. The aim of the study is to assess the status of PSC in Bulgarian hospitals and to compare it to that in USA and Croatian hospitals. Methods: The study was conducted from June 01 to July 31, 2018 using the web-based Bulgarian Version of the Hospital Survey on Patient Safety Culture Questionnaire (B-HSOPSC). Two hundred and forty-eight medical professionals from different hospitals in Bulgaria participated in the study. To quantify the differences of positive scores distributions for each of the 42 HSOPSC items between Bulgarian, Croatian and USA samples, the x²-test was applied. The research hypothesis assumed that there are no significant differences between the Bulgarian, Croatian and US PSCs. Results: The results revealed 14 significant differences in the positive scores between the Bulgarian and Croatian PSCs and 15 between the Bulgarian and the USA PSC, respectively. Bulgarian medical professionals provided less positive responses to 12 items compared with Croatian and USA respondents. The Bulgarian respondents were more positive compared to Croatians on the feedback and communication of medical errors (Items - C1, C4, C5) as well as on the employment of locum staff (A7) and the frequency of reported mistakes (D1). Bulgarian medical professionals were more positive compared with their USA colleagues on the communication of information at shift handover and across hospital units (F5, F7). The distribution of positive scores on items: ‘Staff worries that their mistakes are kept in their personnel file’ (RA16), ‘Things ‘fall between the cracks’ when transferring patients from one unit to another’ (RF3) and ‘Shift handovers are problematic for patients in this hospital’ (RF11) were significantly higher among Bulgarian respondents compared with Croatian and US respondents. Conclusions: Significant differences of positive scores distribution were found between Bulgarian and USA PSC on one hand and between Bulgarian and Croatian on the other. The study reveals that distribution of positive responses could be explained by the cultural, organizational and healthcare system differences.Keywords: patient safety culture, healthcare, HSOPSC, medical error
Procedia PDF Downloads 1361874 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts
Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova
Abstract:
Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.Keywords: diagnostic reagent, metal parts, polimer films, through defects
Procedia PDF Downloads 1501873 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce
Authors: Hang Wang, Xiaoming Gao
Abstract:
The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.Keywords: big data, consumption centers, e-commerce, urban planning, jinan
Procedia PDF Downloads 201872 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad
Abstract:
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly
Procedia PDF Downloads 761871 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom
Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez
Abstract:
This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education
Procedia PDF Downloads 1861870 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions
Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison
Abstract:
Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.Keywords: exergy, hydrates, optimization, phase change material, thermodynamics
Procedia PDF Downloads 1311869 In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity
Authors: Jordan Chamarande, Lisiane Cunat, Corentine Alauzet, Catherine Cailliez-Grimal
Abstract:
Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity.Keywords: gut microbiota, Parabacteroides distasonis, capsular polysaccharide, fimbriae, pilus, O-antigen, pathogenicity, probiotic, comparative genomics
Procedia PDF Downloads 1031868 Decommissioning of Nuclear Power Plants: The Current Position and Requirements
Abstract:
Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development
Procedia PDF Downloads 4711867 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test
Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu
Abstract:
The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test
Procedia PDF Downloads 1461866 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries
Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani
Abstract:
Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation
Procedia PDF Downloads 5151865 Transient Response of Elastic Structures Subjected to a Fluid Medium
Authors: Helnaz Soltani, J. N. Reddy
Abstract:
Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response
Procedia PDF Downloads 5681864 Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules
Authors: Abdul Mutalib Md Jani, Abdul Hadi Mahmud, Mohd Tajuddin Mohd Ali
Abstract:
The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst.Keywords: nanoporous anodic aluminium oxide, silanization, peptide synthesise, click chemistry
Procedia PDF Downloads 2821863 Supporting International Student’s Acculturation Through Chatbot Technology: A Proposed Study
Authors: Sylvie Studente
Abstract:
Despite the increase in international students migrating to the UK, the transition from home environment to a host institution abroad can be overwhelming for many students due to acculturative stressors. These stressors are reported to peak within the first six months of transitioning into study abroad which has determinantal impacts for Higher Education Institutions. These impacts include; increased drop-out rates and overall decreases in academic performance. Research suggests that belongingness can negate acculturative stressors through providing opportunities for students to form necessary social connections. In response to this universities have focussed on utilising technology to create learning communities with the most commonly deployed being social media, blogs, and discussion forums. Despite these attempts, the application of technology in supporting international students is still ambiguous. With the reported growing popularity of mobile devices among students and accelerations in learning technology owing to the COVID-19 pandemic, the potential is recognised to address this challenge via the use of chatbot technology. Whilst traditionally, chatbots were deployed as conversational agents in business domains, they have since been applied to the field of education. Within this emerging area of research, a gap exists in addressing the educational value of chatbots over and above the traditional service orientation categorisation. The proposed study seeks to extend upon current understandings by investigating the challenges faced by international students in studying abroad and exploring the potential of chatbots as a solution to assist students’ acculturation. There has been growing interest in the application of chatbot technology to education accelerated by the shift to online learning during the COVID-19 pandemic. Although interest in educational chatbots has surged, there is a lack of consistency in the research area in terms of guidance on the design to support international students in HE. This gap is widened when considering the additional challenge of supporting multicultural international students with diverse. Diversification in education is rising due to increases in migration trends for international study. As global opportunities for education increase, so does the need for multiculturally inclusive learning support.Keywords: chatbots, education, international students, acculturation
Procedia PDF Downloads 441862 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 1901861 Ancient Egyptian Industry Technology of Canopic Jars, Analytical Study and Conservation Processes of Limestone Canopic Jar
Authors: Abd El Rahman Mohamed
Abstract:
Canopic jars made by the ancient Egyptians from different materials were used to preserve the viscera during the mummification process. The canopic jar studied here dates back to the Late Period (712-332 BC). It is found in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar was carved from limestone and covered with a monkey head lid with painted eyes and ears with red pigment and surrounded with black pigment. The jar contains bandages of textile containing mummy viscera with resin and black resin blocks. The canopic jars were made using the sculpting tools that were used by the ancient Egyptians, such as metal chisels (made of copper) and hammers and emptying the mass of the jar from the inside using a tool invented by the ancient Egyptians, which called the emptying drill. This study also aims to use analytical techniques to identify the components of the jar, its contents, pigments, and previous restoration materials and to understand its deterioration aspects. Visual assessment, isolation and identification of fungi, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used in our study. The jar showed different signs of deterioration, such as dust, dirt, stains, scratches, classifications, missing parts, and breaks; previous conservation materials include using iron wire, completion mortar and an adhesive for assembly. The results revealed that the jar was carved from Dolomite Limestone, red Hematite pigment, Mastic resin, and Linen textile bandages. The previous adhesive was Animal Glue and used Gypsum for the previous completion. The most dominant Microbial infection on the jar was found in the fungi of (Penicillium waksmanii), (Nigrospora sphaerica), (Actinomycetes sp) and (Spore-Forming Gram-Positive Bacilli). Conservation procedures have been applied with high accuracy to conserve the jar, including mechanical and chemical cleaning, re-assembling, completion and consolidation.Keywords: Canopic jar, Consolidation, Mummification, Resin, Viscera.
Procedia PDF Downloads 721860 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon
Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da
Abstract:
In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis
Procedia PDF Downloads 1151859 Demonstration of Risk Factors Associated with Male Athlete Triad in Young Elite Athlete from Pakistan
Authors: Muhammad Saleem
Abstract:
Background: Inattentive food choices and engagement in excessive physical activities by male athletes can potentially lead to adverse health consequences. Objective: The aim was to ascertain the occurrence of risk factors associated with the Male Athlete Triad among young elite athletes in Pakistan. Methodology: In 2018, a cross-sectional study based on questionnaires was conducted at the Pakistan Sports Board. The study aimed to explore the risk factors related to the Male Athlete Triad in young elite athletes who were part of national training camps in major metropolitan areas. The study included proficient male elite athletes aged 18 to 25 years, capable of understanding the English questionnaire. The athletes completed a survey encompassing aspects like demographic information, educational background, Body Mass Index (BMI), sports involvement, and hours of participation. Additionally, they filled out the Eating Attitude Test-26 (EAT-26) and questionnaires assessing risks of amenorrhea and low bone mineral density. The prevalence of risk factors for each of the three components was individually evaluated. The collected data underwent analysis using SPSS-20, with descriptive statistics being applied. Results: The study comprised a sample of 90 elite athletes (mean age: 23.57 ± 2.37 years, mean BMI: 21.97 ± 1.90) engaged in various sports. The EAT-26 results indicated that 50% of athletes were at risk of developing an eating disorder. Moreover, 83.3% exhibited disordered eating behaviors that necessitated referral. Risks for amenorrhea were observed in 15% of the participants, and regarding low bone mineral density, notable risks were absent except for the consumption of caffeinated beverages, which was noted in 51.7% of participants. Conclusion: The study identified a significant prevalence of disordered eating risk among male elite athletes in Pakistan. However, the risks associated with amenorrhea and low bone mineral density were not a major concern in this particular group.Keywords: 1. health and physical education risk factors male athlete associated with the male athlete traid in young elite athlete from pakistan., 2. sports sciences pakistan, 3. risk factors sports sciences pakistan, 4. triad and young elite athlete from pakistan
Procedia PDF Downloads 881858 Requirements for the Development of Competencies to Mentor Trainee Teachers: A Case Study of Vocational Education Cooperating Teachers in Quebec
Authors: Nathalie Gagnon, Andréanne Gagné, Julie Courcy
Abstract:
Quebec's vocational education teachers experience an atypical induction process into the workplace and thus face unique challenges. In contrast to elementary and high school teachers, who must undergo initial teacher training in order to access the profession, vocational education teachers, in most cases, are hired based on their professional expertise in the trade they are teaching, without prior pedagogical training. In addition to creating significant stress, which does not foster the acquisition of teaching roles and skills, this approach also forces recruits into a particular posture during their practical training: that of juggling their dual identities as teacher and trainee simultaneously. Recruits are supported by Cooperating Teachers (CPs) who, as experienced educators, take a critical and constructive look at their practices, observe them in the classroom, give them constructive feedback, and encourage them in their reflective practice. Thus, the vocational setting CP also assumes a distinctive posture and role due to the characteristics of the trainees they support. Although it is recognized that preparation, training, and supervision of CPs are essential factors in improving the support provided to trainees, there is little research about how CPs develop their support skills, and very little research focuses on the distinct posture they occupy. However, in order for them to be properly equipped for the important role they play in recruits’ practical training, it is vital to know more about their experience. An individual’s competencies cannot be studied without first examining what characterizes their experience, how they experience any given situation on cognitive, emotional, and motivational levels, in addition to how they act and react in situ. Depending on its nature, the experience will or will not promote the development of a specific competency. The research from which this communication originates focuses on describing the overall experience of vocational education CP in an effort to better understand the mechanisms linked to the development of their mentoring competencies. Experience and competence were, therefore, the two main theoretical concepts leading the research. As per methodology choices, case study methods were used since it proves to be adequate to describe in a rich and detailed way contemporary phenomena within contexts of life. The set of data used was collected from semi-structured interviews conducted with 15 vocational education CP in Quebec (Canada), followed by the use of a data-driven semi-inductive analysis approach to let the categories emerge organically. Focusing on the development needs of vocational education CP to improve their mentoring skills, this paper presents the results of our research, namely the importance of adequate training, better support offered by university supervisors, greater recognition of their role, and specific time slots dedicated to trainee support. The knowledge resulting from this research could improve the quality of support for trainee teachers in vocational education settings and to a more successful induction into the workplace. This communication also presents recommendations regarding the development of training systems that meet the specific needs of vocational education CP.Keywords: development of competencies, cooperating teacher, mentoring trainee teacher, practical training, vocational education
Procedia PDF Downloads 1151857 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1141856 Polymer Flooding: Chemical Enhanced Oil Recovery Technique
Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti
Abstract:
Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio
Procedia PDF Downloads 3991855 Middle School as a Developmental Context for Emergent Citizenship
Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake
Abstract:
Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche
Procedia PDF Downloads 3701854 The Relationship between Creative Imagination and Curriculum
Authors: Faride Hashemiannejad, Shima Oloomi
Abstract:
Imagination is one of the important elements of creative thinking which as a skill needs attention by the educational system. Although most students learn reading, writing, and arithmetic skills well, they lack high level thinking skills like creative thinking. Therefore, in the information age and in the beginning of entry to knowledge-based society, the educational system needs to think over its goals and mission, and concentrate on creativity-based curriculum. From among curriculum elements-goals, content, method and evaluation “method” is a major domain whose reform can pave the way for fostering imagination and creativity. The purpose of this study was examining the relationship between creativity development and curriculum. Research questions were: (1) is there a relationship between the cognitive-emotional structure of the classroom and creativity development? (2) Is there a relationship between the environmental-social structure of the classroom and creativity development? (3) Is there a relationship between the thinking structure of the classroom and creativity development? (4) Is there a relationship between the physical structure of the classroom and creativity development? (5) Is there a relationship between the instructional structure of the classroom and creativity development? Method: This research is a applied research and the research method is Correlational research. Participants: The total number of participants in this study included 894 students from High school through 11th grade from seven schools of seven zones in Mashad city. Sampling Plan: Sampling was selected based on Random Multi State. Measurement: The dependent measure in this study was: (a) the Test of Creative Thinking, (b) The researcher-made questionnaire includes five fragments, cognitive, emotional structure, environmental social structure, thinking structure, physical structure, and instructional structure. The Results Show: There was significant relationship between the cognitive-emotional structure of the classroom and student’s creativity development (sig=0.139). There was significant relationship between the environmental-social structure of the classroom and student’s creativity development (sig=0.006). There was significant relationship between the thinking structure of the classroom and student’s creativity development (sig=0.004). There was not significant relationship between the physical structure of the classroom and student’s creativity development (sig=0.215). There was significant relationship between the instructional structure of the classroom and student’s creativity development (sig=0.003). These findings denote if students feel secure, calm and confident, they can experience creative learning. Also the quality of coping with students’ questions, imaginations and risks can influence on their creativity development.Keywords: imagination, creativity, curriculum, bioinformatics, biomedicine
Procedia PDF Downloads 4801853 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 2311852 Barbie in India: A Study of Effects of Barbie in Psychological and Social Health
Authors: Suhrita Saha
Abstract:
Barbie is a fashion doll manufactured by the American toy company Mattel Inc and it made debut at the American International Toy Fair in New York in 9 March 1959. From being a fashion doll to a symbol of fetishistic commodification, Barbie has come a long way. A Barbie doll is sold every three seconds across the world, which makes the billion dollar brand the world’s most popular doll for the girls. The 11.5 inch moulded plastic doll has a height of 5 feet 9 inches at 1/6 scale. Her vital statistics have been estimated at 36 inches (chest), 18 inches (waist) and 33 inches (hips). Her weight is permanently set at 110 pounds which would be 35 pounds underweight. Ruth Handler, the creator of Barbie wanted a doll that represented adulthood and allowed children to imagine themselves as teenagers or adults. While Barbie might have been intended to be independent, imaginative and innovative, the physical uniqueness does not confine the doll to the status of a play thing. It is a cultural icon but with far reaching critical implications. The doll is a commodity bearing more social value than practical use value. The way Barbie is produced represents industrialization and commodification of the process of symbolic production. And this symbolic production and consumption is a standardized planned one that produce stereotypical ‘pseudo-individuality’ and suppresses cultural alternatives. Children are being subject to and also arise as subjects in this consumer context. A very gendered, physiologically dissected sexually charged symbolism is imposed upon children (both male and female), childhood, their social worlds, identity, and relationship formation. Barbie is also very popular among Indian children. While the doll is essentially an imaginative representation of the West, it is internalized by the Indian sensibilities. Through observation and questionnaire-based interview within a sample population of adolescent children (primarily female, a few male) and parents (primarily mothers) in Kolkata, an Indian metropolis, the paper puts forth findings of sociological relevance. 1. Barbie creates, recreates, and accentuates already existing divides between the binaries like male- female, fat- thin, sexy- nonsexy, beauty- brain and more. 2. The Indian girl child in her associative process with Barbie wants to be like her and commodifies her own self. The male child also readily accepts this standardized commodification. Definition of beauty is thus based on prejudice and stereotype. 3. Not being able to become Barbie creates health issues both psychological and physiological varying from anorexia to obesity as well as personality disorder. 4. From being a plaything Barbie becomes the game maker. Barbie along with many other forms of simulation further creates a consumer culture and market for all kind of fitness related hyper enchantment and subsequent disillusionment. The construct becomes the reality and the real gets lost in the play world. The paper would thus argue that Barbie from being an innocuous doll transports itself into becoming social construct with long term and irreversible adverse impact.Keywords: barbie, commodification, personality disorder, sterotype
Procedia PDF Downloads 3621851 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System
Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa
Abstract:
This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam
Procedia PDF Downloads 5171850 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle
Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh
Abstract:
India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.Keywords: drinking water resources, Ganga alluvial plain, india, mercury
Procedia PDF Downloads 1451849 Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice Using an Aqueous Extract
Authors: Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh, Ahed Zyoud
Abstract:
Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice using an Aqueous Extract Division of Physiology, Pharmacology and Toxicology Faculty of Medicine and Health Sciences An- Najah National University Nablus- Palestine Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh and Ahed Zyoud Purpose: Throughout history, various natural materials were used as remedies for treatment of various diseases, and recently a vastly growing and renewed interest in herbal medicine is witnessed globally. In Palestinian folk medicine, Crataegus aronia is used as a diuretic and for treatment of hypertension. This study aimed to assess the preliminary phytochemical properties and the diuretic effect of the aqueous extracts of this plant in mice after its intraperitonial administration. Methods: It is an experimental trial applied on mice (n=8, Male, CD-1, weight range: [25-30 gram]), which are divided into two groups (4 in each). The first group administered with the plant extract (500 mg/kg) , and the second with normal saline as negative control group. Then urine output and electrolyte contents were quantified up to 6 hours for the three groups and then compared to the control one. Results: Preliminary phytochemical screening reveals the presence of tannins, alkaloids and flavoniods as major phytoconstituents in aqueous extract. Significant diuresis was noted in those received the aqueous extract of Crataegus aronia (p < 0.05) compared to controls. Moreover, aqueous extract had an acidic pH and a mild increase in the electrolyte excretion (Na, K). Conclusions: Our results revealed that Crataegus aronia aqueous extract has a potential diuretic effect. Further studies are needed to evaluate this diuretic effect in the relief of diseases characterized by volume overload. Keywords: C. aronia, furosemide, diuresis, mice, medicinal plants.Keywords: medicinal plants, diuretic activity, mice, C. aronia, , furosemide, , Phytochemical Investigation
Procedia PDF Downloads 1981848 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism
Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation
Procedia PDF Downloads 641847 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon
Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer
Abstract:
Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation
Procedia PDF Downloads 100