Search results for: voltage stability and load flow
9960 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory
Procedia PDF Downloads 4599959 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED
Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae
Abstract:
Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device
Procedia PDF Downloads 7509958 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals
Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady
Abstract:
Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.Keywords: core stability, isokinetic, trunk proprioception, biomechanics
Procedia PDF Downloads 4759957 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 919956 The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid
Authors: Hacina Abchiche, Mounir Mellal, Imene Bouchelkia
Abstract:
The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer.Keywords: rhéologie, non-Newtonian fluids, experimental stady, mathematical model, cylindrical conducts
Procedia PDF Downloads 2909955 Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.Keywords: materials, technical, ceramics, properties, thermal, stability, advantages
Procedia PDF Downloads 849954 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly
Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee
Abstract:
Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect
Procedia PDF Downloads 6299953 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network
Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag
Abstract:
This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load
Procedia PDF Downloads 5659952 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)
Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud
Abstract:
Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.Keywords: electric vehicle, redox flow battery, packaging, vanadium
Procedia PDF Downloads 4339951 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method
Authors: Raju Murugan, Pankaj S. Kolhe
Abstract:
The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio
Procedia PDF Downloads 2149950 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment
Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit
Abstract:
Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.
Procedia PDF Downloads 1169949 Empirical Study of Correlation between the Cost Performance Index Stability and the Project Cost Forecast Accuracy in Construction Projects
Authors: Amin AminiKhafri, James M. Dawson-Edwards, Ryan M. Simpson, Simaan M. AbouRizk
Abstract:
Earned value management (EVM) has been introduced as an integrated method to combine schedule, budget, and work breakdown structure (WBS). EVM provides various indices to demonstrate project performance including the cost performance index (CPI). CPI is also used to forecast final project cost at completion based on the cost performance during the project execution. Knowing the final project cost during execution can initiate corrective actions, which can enhance project outputs. CPI, however, is not constant during the project, and calculating the final project cost using a variable index is an inaccurate and challenging task for practitioners. Since CPI is based on the cumulative progress values and because of the learning curve effect, CPI variation dampens and stabilizes as project progress. Although various definitions for the CPI stability have been proposed in literature, many scholars have agreed upon the definition that considers a project as stable if the CPI at 20% completion varies less than 0.1 from the final CPI. While 20% completion point is recognized as the stability point for military development projects, construction projects stability have not been studied. In the current study, an empirical study was first conducted using construction project data to determine the stability point for construction projects. Early findings have demonstrated that a majority of construction projects stabilize towards completion (i.e., after 70% completion point). To investigate the effect of CPI stability on cost forecast accuracy, the correlation between CPI stability and project cost at completion forecast accuracy was also investigated. It was determined that as projects progress closer towards completion, variation of the CPI decreases and final project cost forecast accuracy increases. Most projects were found to have 90% accuracy in the final cost forecast at 70% completion point, which is inlined with findings from the CPI stability findings. It can be concluded that early stabilization of the project CPI results in more accurate cost at completion forecasts.Keywords: cost performance index, earned value management, empirical study, final project cost
Procedia PDF Downloads 1569948 An Improved Photovolatic System Balancer Architecture
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Cyuan-Jyun Wong
Abstract:
An improved PV balancer for photovoltaic applications is proposed in this paper. The proposed PV balancer senses the voltage and current of PV module and adjusts the output voltage of converter. Thus, the PV system can implement maximum power point tracking (MPPT) independently for each module whether it is under shading, different irradiation or degradation of PV cell. In addition, the cost of PV balancer can be reduced due to the low power rating of converter. To assess the effectiveness of the proposed system, two PV balancers are designed and verified through simulation under different shading conditions. The proposed PV balancers can provide more energy than the traditional PV balancer.Keywords: MPPT, partial shading, PV System, converter
Procedia PDF Downloads 2919947 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking
Authors: Soheib Fergani
Abstract:
This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation
Procedia PDF Downloads 659946 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4969945 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials
Authors: Faruk Elaldi
Abstract:
There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced
Procedia PDF Downloads 1849944 Pupil Size: A Measure of Identification Memory in Target Present Lineups
Authors: Camilla Elphick, Graham Hole, Samuel Hutton, Graham Pike
Abstract:
Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures.Keywords: cognitive load, eyewitness identification, face recognition, pupillometry
Procedia PDF Downloads 4049943 Control Flow around NACA 4415 Airfoil Using Slot and Injection
Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine
Abstract:
One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficientKeywords: CFD, control flow, lift, slot
Procedia PDF Downloads 1979942 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study
Authors: Rami A. Maher, Ibraheem K. Ibraheem
Abstract:
This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance
Procedia PDF Downloads 4079941 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 3559940 Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler
Authors: Xiaozhou Liu, Guangyu Zhu, Yu Zhang, Hongwei Wu
Abstract:
The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing.Keywords: circulating fluidized bed, CFB, wind-box, air flow distributing device, visual experiment, velocity distribution uniformity experiment, hot test
Procedia PDF Downloads 1769939 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 3209938 Thermo-Oxidative Degradation of Asphalt Modified with High Density Polyethylene and Engine Oil
Authors: Helder Shelton Abel Manguene, Giovanna Buonocore, Herminio Francisco Muiambo
Abstract:
Paved roads are designed for 10-15 years of life. However, many asphalted roads suffer degradation before reaching their lifetime due to aging caused by load conditions and climatic factors. Oxidation is the main asphalt aging mechanism, which leads to a reduced bond between aggregate particles, increasing the potential for stripping and moisture damage, decreasing fatigue lifetime and reducing resistance to thermal cracking. To improve the performance of asphalt and mitigate these problems, modifiers such as polymers, oils and certain residues have been used. This work aims to study the influence of the addition of high-density polyethylene (HDPE) and engine oil on the thermal stability of asphalt in an oxidizing atmosphere. For the study, compositions containing asphalt, motor oil and HDPE were prepared, varying the concentration of the motor oil by 2.5%, 5%, 7.5% and 10% and keeping the HDPE concentration fixed at 5%. The results show that the pure asphalt sample is degraded in a single step that starts at approximately 311 ºC; All samples of modified asphalt except the one that contains 5% of motor oil have three degradation steps that start below the starting temperature of degradation of pure asphalt (about 250-300 ºC); The temperature of onset of degradation of the modified asphalt is shown to decrease as the concentration of the motor oil increases, suggesting a slight loss of thermal stability of the asphalt as the quantity of the motor oil increases.Keywords: Asphalt, DTG, engine oil, HDPE, TGA
Procedia PDF Downloads 2119937 Leather Quality of Some Sudan Goats under Range Condition
Authors: Mohammed Alhadi Ebrahiem
Abstract:
This study was designed to investigate the effect of breed and feeding level before slaughter on the skin\leather quality of the three main breeds of Sudan goats. Thirty (30) pieces of fresh skins from the three goat breeds (an average age 1-1.5 years) were chosen for the study purpose. For whole variations between the three breeds in two levels of feeding (poor and rich pastures) Complete Randomized Design (CRD) was used for data analysis. The results revealed that, leather weight (kg), elongation%, tensile strength (kg/cm2), cracking load (kg), thickness (mm), tear load (kg/cm) and chrome% findings were significantly affected (P≥0.05) by breed variation. Flexibility, moisture%, Ash% and fat % were not significantly affected (P ≥ 0.05) by breed. On the other hand, skin weight (kg), Cracking load (kg), Tear load (kg/cm) and Ash% were significantly affected (P≥0.05) by pasture quality. While Leather Elongation%, Tensile strength (kg/cm2), Thickness (mm), Flexibility, Moisture%, Fat % and Chrome% were not statistically (P ≥ 0.05) affected by pastures quality.Keywords: skin\leather quality, goats leather, natural pasture, Sudan
Procedia PDF Downloads 3599936 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region
Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.
Abstract:
A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.Keywords: catheter, slip parameter, drag parameter, eccentricity
Procedia PDF Downloads 5239935 The Correlation between Nasal Resistance and Obligatory Oronasal Switching Point in Non-Athletic Non-Smoking Healthy Men
Authors: Amir H. Bayat, Mohammad R. Alipour, Saeed Khamneh
Abstract:
As the respiration via nose is important physiologically, many studies have been done about nasal breathing that switches to oronasal breathing during exercise. The aim of this study was to assess the role of anterior nasal resistance as one of the effective factors on this switching. Twelve young, healthy, non-athletic and non-smoker male volunteers with normal BMI were selected after physical examination and participated in exercise protocol, including measurement of the ventilation, work load and oronasal switching point (OSP) during exercise, and anterior rhinomanometry at rest. The protocol was an incremental exercise with 25 watt increase in work load per minute up to OSP occurrence. There was a significant negative correlation between resting total anterior nasal resistance with OSP, work load and ventilation (p<0.05, r= -0.709). Resting total anterior nasal resistance can be considered as an important factor on OSP occurrence. So, the reducing the resistance of nasal passage may increase nasal respiration tolerance for longer time during exercise.Keywords: anterior nasal resistance, exercise, OSP, ventilation, work load
Procedia PDF Downloads 4039934 Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus
Abstract:
Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other.Keywords: sani isa, Ali musaburger’s fluid, Laplace transform, fractional derivatives, annulus
Procedia PDF Downloads 249933 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade
Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng
Abstract:
Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics
Procedia PDF Downloads 2659932 Seismic Performance Evaluation of Diagrid Components
Authors: Taejin Kim, Heonwoo Lee, Jong-Ho Kim, Dongchul Lee
Abstract:
Recently, there have been various high-rise building projects which reflect unique inspiration from architects to their feature. And it is frequently found that some of these buildings have diagrid structural system. Diagrid system provides engineers many options for structural plan, since it has triangular module so it can form a number of complex shapes. Unlike braced frame systems, diagonal members in diagrid system resist gravity and horizontal loads simultaneously. Correspondingly, diagrid members take roles of both beams and columns, and it is expected that their ductile capacity may depend on the amount of gravity loads. However, not enough studies have been made for this issue so far, which means that there is demand of examination on the seismic behavior of diagrid members under large gravity loads. Therefore, in this study, the ductile capacity of diagrid members was evaluated through analytical and experimental method. Several cases that have different vertical load condition were set up for both approaches to consider the effect of initial compression force due to gravity load. Regarding the result, it was found that buckling in a diagonal member occurs at smaller drift angle when larger gravity load acts on the specimen, which also reduces the amount of energy dissipation. It means that axial stress in a diagonal member reaches critical buckling force early due to the combined axial force from not only horizontal load but also gravity load.Keywords: buckling, diagrid, ductility, seismic performance
Procedia PDF Downloads 4059931 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 86