Search results for: predictive analytics
191 Digital Twins in the Built Environment: A Systematic Literature Review
Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John
Abstract:
Digital Twins (DT) are an innovative concept of cyber-physical integration of data between an asset and its virtual replica. They have originated in established industries such as manufacturing and aviation and have garnered increasing attention as a potentially transformative technology within the built environment. With the potential to support decision-making, real-time simulations, forecasting abilities and managing operations, DT do not fall under a singular scope. This makes defining and leveraging the potential uses of DT a potential missed opportunity. Despite its recognised potential in established industries, literature on DT in the built environment remains limited. Inadequate attention has been given to the implementation of DT in construction projects, as opposed to its operational stage applications. Additionally, the absence of a standardised definition has resulted in inconsistent interpretations of DT in both industry and academia. There is a need to consolidate research to foster a unified understanding of the DT. Such consolidation is indispensable to ensure that future research is undertaken with a solid foundation. This paper aims to present a comprehensive systematic literature review on the role of DT in the built environment. To accomplish this objective, a review and thematic analysis was conducted, encompassing relevant papers from the last five years. The identified papers are categorised based on their specific areas of focus, and the content of these papers was translated into a through classification of DT. In characterising DT and the associated data processes identified, this systematic literature review has identified 6 DT opportunities specifically relevant to the built environment: Facilitating collaborative procurement methods, Supporting net-zero and decarbonization goals, Supporting Modern Methods of Construction (MMC) and off-site manufacturing (OSM), Providing increased transparency and stakeholders collaboration, Supporting complex decision making (real-time simulations and forecasting abilities) and Seamless integration with Internet of Things (IoT), data analytics and other DT. Finally, a discussion of each area of research is provided. A table of definitions of DT across the reviewed literature is provided, seeking to delineate the current state of DT implementation in the built environment context. Gaps in knowledge are identified, as well as research challenges and opportunities for further advancements in the implementation of DT within the built environment. This paper critically assesses the existing literature to identify the potential of DT applications, aiming to harness the transformative capabilities of data in the built environment. By fostering a unified comprehension of DT, this paper contributes to advancing the effective adoption and utilisation of this technology, accelerating progress towards the realisation of smart cities, decarbonisation, and other envisioned roles for DT in the construction domain.Keywords: built environment, design, digital twins, literature review
Procedia PDF Downloads 77190 Modelling for Roof Failure Analysis in an Underground Cave
Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández
Abstract:
Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring
Procedia PDF Downloads 111189 Self-rated Health as a Predictor of Hospitalizations in Patients with Bipolar Disorder and Major Depression: A Prospective Cohort Study of the United Kingdom Biobank
Authors: Haoyu Zhao, Qianshu Ma, Min Xie, Yunqi Huang, Yunjia Liu, Huan Song, Hongsheng Gui, Mingli Li, Qiang Wang
Abstract:
Rationale: Bipolar disorder (BD) and major depressive disorder (MDD), as severe chronic illnesses that restrict patients’ psychosocial functioning and reduce their quality of life, are both categorized into mood disorders. Emerging evidence has suggested that the reliability of self-rated health (SRH) was wellvalidated and that the risk of various health outcomes, including mortality and health care costs, could be predicted by SRH. Compared with other lengthy multi-item patient-reported outcomes (PRO) measures, SRH was proven to have a comparable predictive ability to predict mortality and healthcare utilization. However, to our knowledge, no study has been conducted to assess the association between SRH and hospitalization among people with mental disorders. Therefore, our study aims to determine the association between SRH and subsequent all-cause hospitalizations in patients with BD and MDD. Methods: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. Results: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02% were female, and 3,029 (10.11%), 15,972 (53.30%), 8,313 (27.74%), and 2,652 (8.85%) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19% had a hospitalization event within 2 years compared with 22.65% for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95% CI 1.21-1.42), 1.82 (95% CI 1.68-1.98), and 2.45 (95% CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. Conclusion: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study facilitates rapid interpretation of SRH values and underscores the need for proactive SRH screening in this population, which might inform resource allocation and enhance high-risk population detection.Keywords: severe mental illnesses, hospitalization, risk prediction, patient-reported outcomes
Procedia PDF Downloads 156188 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 690187 The Effect of Parathyroid Hormone on Aldosterone Secretion in Patients with Primary Hyperparathyroidism
Authors: Branka Milicic Stanic, Romana Mijovic
Abstract:
In primary hyperparathyroidism, an increased risk of developing cardiovascular disease may exist due to increased activity of the renin-angiotensin-aldosterone system (RAAS). In adenomatous altered tissue of parathyroid gland, compared to normal tissue, there are two to fourfold increase in the expression of type 1 angiotensin II receptors. As there is a clear evidence of the independent role of aldosterone on the cardiovascular system, the aim of this study was to evaluate the existence of an association between aldosterone secretion and parathyroid hormone in patients with primary hyperparathyroidism. This study included 48 patients with elevated parathyroid hormone who had come to the Departement of Nuclear Medicine, Clinical Center of Vojvodina, for Parathyroid Scintigraphy. The control group consisted of 30 healthy subjects who matched age and gender to the study group. All the results were statistically processed by statistical package STATISTICA 14 (Statsoft Inc,Tulsa, OK, USA). The survey was conducted between February 2017 and April 2018 at the Departement of Nuclear Medicine and at the Departement for Endocinology Diagnoistics, in Clinical Center of Vojvodina, Novi Sad. Compared to the control group, the study group had statistically significantly higher values of aldosterone (p=0.028), total calcium (p=0.01), ionized calcium (p=0.003) and parathyroid hormone (N-TACT PTH) (p=0.00), while statistically a significant lower levels in the study group were for phosphorus (p=0.003) and vitamin D (p=0.04). A linear correlation analysis in the study group revealed a statistically significant degree of positive correlation between renin and N-TACT PTH (r=0.688, p<0.05); renin and calcium (r=0.673, p<0.05) and renin and ionized calcium (r=0.641, p<0.05). Serum aldosterone and parathyroid hormone levels (N-TACT) were correlated positively in patients with primary hyperparathyroidism (r=0.509, p<0.05). According to the linear correlation analysis in the control group, aldosterone showed no positive correlation with N-TACT PTH (r=-0.285, p>0.05), as well as total and ionized calcium (r=-0.200, p>0.05; r=-0.313, p>0.05). In multivariate regression analysis of the study group, the strongest predictive variable of aldosterone secretion was N-TACT PTH (p=0.011). Aldosterone correlated positively to PTH levels in patients with primary hyperparathyroidism, and the fact is that in these patients aldosterone might be a key mediator of cardiovascular symptoms. All this knowledge should help to find new treatments to prevent cardiovascular disease.Keywords: aldosterone, hyperparathyroidism, parathyroid hormone, parathyroid gland
Procedia PDF Downloads 136186 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction
Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl
Abstract:
Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR
Procedia PDF Downloads 287185 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital
Authors: Li-Ching Lin, Yu-Tzu Dai
Abstract:
Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice
Procedia PDF Downloads 194184 Value of FOXP3 Expression in Prediction of Neoadjuvant Chemotherapy Effect in Triple Negative Breast Cancer
Authors: Badawia Ibrahim, Iman Hussein, Samar El Sheikh, Fatma Abou Elkasem, Hazem Abo Ismael
Abstract:
Background: Response of breast carcinoma to neoadjuvant chemotherapy (NAC) varies regarding many factors including hormonal receptor status. Breast cancer is a heterogenous disease with different outcomes, hence a need arises for new markers predicting the outcome of NAC especially for the triple negative group when estrogen, progesterone receptors and Her2/neu are negative. FOXP3 is a promising target with unclear role. Aim: To examine the value of FOXP3 expression in locally advanced triple negative breast cancer tumoral cells as well as tumor infiltrating lymphocytes (TILs) and to elucidate its relation to the extent of NAC response. Material and Methods: Forty five cases of immunohistochemically confirmed to be triple negative breast carcinoma were evaluated for NAC (Doxorubicin, Cyclophosphamide AC x 4 cycles + Paclitaxel x 12 weeks, patients with ejection fraction less than 60% received Taxotere or Cyclophosphamide, Methotrexate, Fluorouracil CMF) response in both tumour and lymph nodes status according to Miller & Payne's and Sataloff's systems. FOXP3 expression in tumor as well as TILs evaluated in the pretherapy biopsies was correlated with NAC response in breast tumor and lymph nodes as well as other clinicopathological factors. Results: Breast tumour cells showed FOXP3 positive cytoplasmic expression in (42%) of cases. High FOXP3 expression percentage was detected in (47%) of cases. High infiltration by FOXP3+TILs was detected in (49%) of cases. Positive FOXP3 expression was associated with negative lymph node metastasis. High FOXP3 expression percentage and high infiltration by FOXP3+TILs were significantly associated with complete therapy response in axillary lymph nodes. High FOXP3 expression in tumour cells was associated with high infiltration by FOXP3+TILs. Conclusion: This result may provide evidence that FOXP3 marker is a good prognostic and predictive marker for triple negative breast cancer (TNBC) indicated for neoadjuvant chemotherapy and can be used for stratifications of TNBC cases indicated for NAC. As well, this study confirmed the fact that the tumour cells and the surrounding microenvironment interact with each other and the tumour microenvironment can influence the treatment outcomes of TNBC.Keywords: breast cancer, FOXP3 expression, prediction of neoadjuvant chemotherapy effect, triple negative
Procedia PDF Downloads 272183 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 70182 A Factor-Analytical Approach on Identities in Environmentally Significant Behavior
Authors: Alina M. Udall, Judith de Groot, Simon de Jong, Avi Shankar
Abstract:
There are many ways in which environmentally significant behavior can be explained. Dominant psychological theories, namely, the theory of planned behavior, the norm-activation theory, its extension, the value-belief-norm theory, and the theory of habit do not explain large parts of environmentally significant behaviors. A new and rapidly growing approach is to focus on how consumer’s identities predict environmentally significant behavior. Identity may be relevant because consumers have many identities that are assumed to guide their behavior. Therefore, we assume that many identities will guide environmentally significant behavior. Many identities can be relevant for environmentally significant behavior. In reviewing the literature, over 200 identities have been studied making it difficult to establish the key identities for explaining environmentally significant behavior. Therefore, this paper first aims to establish the key identities previously used for explaining environmentally significant behavior. Second, the aim is to test which key identities explain environmentally significant behavior. To address the aims, an online survey study (n = 578) is conducted. First, the exploratory factor analysis reveals 15 identity factors. The identity factors are namely, environmentally concerned identity, anti-environmental self-identity, environmental place identity, connectedness with nature identity, green space visitor identity, active ethical identity, carbon off-setter identity, thoughtful self-identity, close community identity, anti-carbon off-setter identity, environmental group member identity, national identity, identification with developed countries, cyclist identity, and thoughtful organisation identity. Furthermore, to help researchers understand and operationalize the identities, the article provides theoretical definitions for each of the identities, in line with identity theory, social identity theory, and place identity theory. Second, the hierarchical regression shows only 10 factors significantly uniquely explain the variance in environmentally significant behavior. In order of predictive power the identities are namely, environmentally concerned identity, anti-environmental self-identity, thoughtful self-identity, environmental group member identity, anti-carbon off-setter identity, carbon off-setter identity, connectedness with nature identity, national identity, and green space visitor identity. The identities explain over 60% of the variance in environmentally significant behavior, a large effect size. Based on this finding, the article reveals a new, theoretical framework showing the key identities explaining environmentally significant behavior, to help improve and align the field.Keywords: environmentally significant behavior, factor analysis, place identity, social identity
Procedia PDF Downloads 448181 Predicting Success and Failure in Drug Development Using Text Analysis
Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev
Abstract:
Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.Keywords: data analysis, drug development, sentiment analysis, text-mining
Procedia PDF Downloads 155180 Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress
Authors: Lucie Côté, Martin Lauzier, Guy Beauchamp, France Guertin
Abstract:
Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.Keywords: acceptance, coping strategies, stress, validation process
Procedia PDF Downloads 336179 Text Mining Past Medical History in Electrophysiological Studies
Authors: Roni Ramon-Gonen, Amir Dori, Shahar Shelly
Abstract:
Background and objectives: Healthcare professionals produce abundant textual information in their daily clinical practice. The extraction of insights from all the gathered information, mainly unstructured and lacking in normalization, is one of the major challenges in computational medicine. In this respect, text mining assembles different techniques to derive valuable insights from unstructured textual data, so it has led to being especially relevant in Medicine. Neurological patient’s history allows the clinician to define the patient’s symptoms and along with the result of the nerve conduction study (NCS) and electromyography (EMG) test, assists in formulating a differential diagnosis. Past medical history (PMH) helps to direct the latter. In this study, we aimed to identify relevant PMH, understand which PMHs are common among patients in the referral cohort and documented by the medical staff, and examine the differences by sex and age in a large cohort based on textual format notes. Methods: We retrospectively identified all patients with abnormal NCS between May 2016 to February 2022. Age, gender, and all NCS attributes reports were recorded, including the summary text. All patients’ histories were extracted from the text report by a query. Basic text cleansing and data preparation were performed, as well as lemmatization. Very popular words (like ‘left’ and ‘right’) were deleted. Several words were replaced with their abbreviations. A bag of words approach was used to perform the analyses. Different visualizations which are common in text analysis, were created to easily grasp the results. Results: We identified 5282 unique patients. Three thousand and five (57%) patients had documented PMH. Of which 60.4% (n=1817) were males. The total median age was 62 years (range 0.12 – 97.2 years), and the majority of patients (83%) presented after the age of forty years. The top two documented medical histories were diabetes mellitus (DM) and surgery. DM was observed in 16.3% of the patients, and surgery at 15.4%. Other frequent patient histories (among the top 20) were fracture, cancer (ca), motor vehicle accident (MVA), leg, lumbar, discopathy, back and carpal tunnel release (CTR). When separating the data by sex, we can see that DM and MVA are more frequent among males, while cancer and CTR are less frequent. On the other hand, the top medical history in females was surgery and, after that, DM. Other frequent histories among females are breast cancer, fractures, and CTR. In the younger population (ages 18 to 26), the frequent PMH were surgery, fractures, trauma, and MVA. Discussion: By applying text mining approaches to unstructured data, we were able to better understand which medical histories are more relevant in these circumstances and, in addition, gain additional insights regarding sex and age differences. These insights might help to collect epidemiological demographical data as well as raise new hypotheses. One limitation of this work is that each clinician might use different words or abbreviations to describe the same condition, and therefore using a coding system can be beneficial.Keywords: abnormal studies, healthcare analytics, medical history, nerve conduction studies, text mining, textual analysis
Procedia PDF Downloads 94178 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 353177 Diagnostic Value of CT Scan in Acute Appendicitis
Authors: Maria Medeiros, Suren Surenthiran, Abitha Muralithar, Soushma Seeburuth, Mohammed Mohammed
Abstract:
Introduction: Appendicitis is the most common surgical emergency globally and can have devastating consequences. Diagnostic imaging in acute appendicitis has become increasingly common in aiding the diagnosis of acute appendicitis. Computerized tomography (CT) and ultrasound (US) are the most commonly used imaging modalities for diagnosing acute appendicitis. Pre-operative imaging has contributed to a reduction of negative appendicectomy rates from between 10-29% to 5%. Literature report CT scan has a diagnostic sensitivity of 94% in acute appendicitis. This clinical audit was conducted to establish if the CT scan's diagnostic yield for acute appendicitis matches the literature. CT scan has a high sensitivity and specificity for diagnosing acute appendicitis and its use can result in a lower negative appendicectomy rate. The aim of this study is to compare the pre-operative imaging findings from CT scans to the histopathology results post-operatively and establish the accuracy of CT scans in aiding the diagnosis of acute appendicitis. Methods: This was a retrospective study focusing on adult presentations to the general surgery department in a district general hospital in central London with an impression of acute appendicitis. We analyzed all patients from July 2022 to December 2022 who underwent a CT scan preceding appendicectomy. Pre-operative CT findings and post-operative histopathology findings were compared to establish the efficacy of CT scans in diagnosing acute appendicitis. Our results were also cross-referenced with pre-existing literature. Data was collected and anonymized using CERNER and analyzed in Microsoft Excel. Exclusion criteria: Children, age <16. Results: 65 patients had CT scans in which the report stated acute appendicitis. Of those 65 patients, 62 patients underwent diagnostic laparoscopies. 100% of patients who underwent an appendicectomy with a pre-operative CT scan showing acute appendicitis had acute appendicitis in histopathology analysis. 3 of the 65 patients who had a CT scan showing appendicitis received conservative treatment. Conclusion: CT scans positive for acute appendicitis had 100% sensitivity and a positive predictive value, which matches published research studies (sensitivity of 94%). The use of CT scans in the diagnostic work-up for acute appendicitis can be extremely helpful in a) confirming the diagnosis and b) reducing the rates of negative appendicectomies and consequently reducing unnecessary operative-associated risks for patients, reducing costs and reducing pressure on emergency theatre lists.Keywords: acute apendicitis, CT scan, general surgery, imaging
Procedia PDF Downloads 88176 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 93175 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 379174 Preventive Impact of Regional Analgesia on Chronic Neuropathic Pain After General Surgery
Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila, Lamara Abdelhak
Abstract:
Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with postsurgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariable analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature, particularly in surgeries that are more prone to chronicization.Keywords: post-surgical chronic pain, post-surgical chronic neuropathic pain, regional anesthesia-analgesia techniques, neuropathic pain score DN2, preventive impact
Procedia PDF Downloads 76173 An Experimental Exploration of the Interaction between Consumer Ethics Perceptions, Legality Evaluations, and Mind-Sets
Authors: Daphne Sobolev, Niklas Voege
Abstract:
During the last three decades, consumer ethics perceptions have attracted the attention of a large number of researchers. Nevertheless, little is known about the effect of the cognitive and situational contexts of the decision on ethics judgments. In this paper, the interrelationship between consumers’ ethics perceptions, legality evaluations and mind-sets are explored. Legality evaluations represent the cognitive context of the ethical judgments, whereas mind-sets represent their situational context. Drawing on moral development theories and priming theories, it is hypothesized that both factors are significantly related to consumer ethics perceptions. To test this hypothesis, 289 participants were allocated to three mind-set experimental conditions and a control group. Participants in the mind-set conditions were primed for aggressiveness, politeness or awareness to the negative legal consequences of breaking the law. Mind-sets were induced using a sentence-unscrambling task, in which target words were included. Ethics and legality judgments were assessed using consumer ethics and internet ethics questionnaires. All participants were asked to rate the ethicality and legality of consumer actions described in the questionnaires. The results showed that consumer ethics and legality perceptions were significantly correlated. Moreover, including legality evaluations as a variable in ethics judgment models increased the predictive power of the models. In addition, inducing aggressiveness in participants reduced their sensitivity to ethical issues; priming awareness to negative legal consequences increased their sensitivity to ethics when uncertainty about the legality of the judged scenario was high. Furthermore, the correlation between ethics and legality judgments was significant overall mind-set conditions. However, the results revealed conflicts between ethics and legality perceptions: consumers considered 10%-14% of the presented behaviors unethical and legal, or ethical and illegal. In 10-23% of the questions, participants indicated that they did not know whether the described action was legal or not. In addition, an asymmetry between the effects of aggressiveness and politeness priming was found. The results show that the legality judgments and mind-sets interact with consumer ethics perceptions. Thus, they portray consumer ethical judgments as dynamical processes which are inseparable from other cognitive processes and situational variables. They highlight that legal and ethical education, as well as adequate situational cues at the service place, could have a positive effect on consumer ethics perceptions. Theoretical contribution is discussed.Keywords: consumer ethics, legality judgments, mind-set, priming, aggressiveness
Procedia PDF Downloads 294172 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff
Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers
Abstract:
Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development
Procedia PDF Downloads 124171 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life
Authors: Desplanches Maxime
Abstract:
Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression
Procedia PDF Downloads 67170 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis
Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad
Abstract:
Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling
Procedia PDF Downloads 176169 Climate Change and Health: Scoping Review of Scientific Literature 1990-2015
Authors: Niamh Herlihy, Helen Fischer, Rainer Sauerborn, Anneliese Depoux, Avner Bar-Hen, Antoine Flauhault, Stefanie Schütte
Abstract:
In the recent decades, there has been an increase in the number of publications both in the scientific and grey literature on the potential health risks associated with climate change. Though interest in climate change and health is growing, there are still many gaps to adequately assess our future health needs in a warmer world. Generating a greater understanding of the health impacts of climate change could be a key step in inciting the changes necessary to decelerate global warming and to target new strategies to mitigate the consequences on health systems. A long term and broad overview of existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. We conducted a scoping review of published peer-reviewed literature on climate change and health from two large databases, PubMed and Web of Science, between 1990 and 2015. A scoping review allowed for a broad analysis of this complex topic on a meta-level as opposed to a thematically refined literature review. A detailed search strategy including specific climate and health terminology was used to search the two databases. Inclusion and exclusion criteria were applied in order to capture the most relevant literature on the human health impact of climate change within the chosen timeframe. Two reviewers screened the papers independently and any differences arising were resolved by a third party. Data was extracted, categorized and coded both manually and using R software. Analytics and infographics were developed from results. There were 7269 articles identified between the two databases following the removal of duplicates. After screening of the articles by both reviewers 3751 were included. As expected, preliminary results indicate that the number of publications on the topic has increased over time. Geographically, the majority of publications address the impact of climate change and health in Europe and North America, This is particularly alarming given that countries in the Global South will bear the greatest health burden. Concerning health outcomes, infectious diseases, particularly dengue fever and other mosquito transmitted infections are the most frequently cited. We highlight research gaps in certain areas e.g climate migration and mental health issues. We are developing a database of the identified climate change and health publications and are compiling a report for publication and dissemination of the findings. As health is a major co-beneficiary to climate change mitigation strategies, our results may serve as a useful source of information for research funders and investors when considering future research needs as well as the cost-effectiveness of climate change strategies. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.Keywords: climate change, health, review, mapping
Procedia PDF Downloads 316168 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans
Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar
Abstract:
Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging
Procedia PDF Downloads 131167 Religious Fundamentalism Prescribes Requirements for Marriage and Reproduction
Authors: Steven M. Graham, Anne V. Magee
Abstract:
Most world religions have sacred texts and traditions that provide instruction about and definitions of marriage, family, and family duties and responsibilities. Given that religious fundamentalism (RF) is defined as the belief that these sacred texts and traditions are literally and completely true to the exclusion of other teachings, RF should be predictive of the attitudes one holds about these topics. The goals of the present research were to: (1) explore the extent to which people think that men and women can be happy without marriage, a significant sexual relationship, a long-term romantic relationship, and having children; (2) determine the extent to which RF is associated with these beliefs; and, (3) to determine how RF is associated with considering certain elements of a relationship to be necessary for thinking of that relationship as a marriage. In Study 1, participants completed a reliable and valid measure of RF and answered questions about the necessity of various elements for a happy life. Higher RF scores were associated with the belief that both men and women require marriage, a sexual relationship, a long-term romantic relationship, and children in order to have a happy life. In Study 2, participants completed these same measures and the pattern of results replicated when controlling for overall religiosity. That is, RF predicted these beliefs over and above religiosity. Additionally, participants indicated the extent to which a variety of characteristics were necessary to consider a particular relationship to be a marriage. Controlling for overall religiosity, higher RF scores were associated with the belief that the following were required to consider a relationship a marriage: religious sanctification, a sexual component, sexual monogamy, emotional monogamy, family approval, children (or the intent to have them), cohabitation, and shared finances. Interestingly, and unexpectedly, higher RF scores were correlated with less importance placed on mutual consent in order to consider a relationship a marriage. RF scores were uncorrelated with the importance placed on legal recognition or lifelong commitment and these null findings do not appear to be attributable to ceiling effects or lack of variability. These results suggest that RF constrains views about both the importance of marriage and family in one’s life and also the characteristics required to consider a relationship a proper marriage. This could have implications for the mental and physical health of believers high in RF, either positive or negative, depending upon the extent to which their lives correspond to these templates prescribed by RF. Additionally, some of these correlations with RF were substantial enough (> .70) that the relevant items could serve as a brief, unobtrusive measure of RF. Future research will investigate these possibilities.Keywords: attitudes about marriage, fertility intentions, measurement, religious fundamentalism
Procedia PDF Downloads 116166 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 120165 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis
Authors: Esra Polat
Abstract:
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis
Procedia PDF Downloads 278164 Use of Analytic Hierarchy Process for Plant Site Selection
Authors: Muzaffar Shaikh, Shoaib Shaikh, Mark Moyou, Gaby Hawat
Abstract:
This paper presents the use of Analytic Hierarchy Process (AHP) in evaluating the site selection of a new plant by a corporation. Due to intense competition at a global level, multinational corporations are continuously striving to minimize production and shipping costs of their products. One key factor that plays significant role in cost minimization is where the production plant is located. In the U.S. for example, labor and land costs continue to be very high while they are much cheaper in countries such as India, China, Indonesia, etc. This is why many multinational U.S. corporations (e.g. General Electric, Caterpillar Inc., Ford, General Motors, etc.), have shifted their manufacturing plants outside. The continued expansion of the Internet and its availability along with technological advances in computer hardware and software all around the globe have facilitated U.S. corporations to expand abroad as they seek to reduce production cost. In particular, management of multinational corporations is constantly engaged in concentrating on countries at a broad level, or cities within specific countries where certain or all parts of their end products or the end products themselves can be manufactured cheaper than in the U.S. AHP is based on preference ratings of a specific decision maker who can be the Chief Operating Officer of a company or his/her designated data analytics engineer. It serves as a tool to first evaluate the plant site selection criteria and second, alternate plant sites themselves against these criteria in a systematic manner. Examples of site selection criteria are: Transportation Modes, Taxes, Energy Modes, Labor Force Availability, Labor Rates, Raw Material Availability, Political Stability, Land Costs, etc. As a necessary first step under AHP, evaluation criteria and alternate plant site countries are identified. Depending upon the fidelity of analysis, specific cities within a country can also be chosen as alternative facility locations. AHP experience in this type of analysis indicates that the initial analysis can be performed at the Country-level. Once a specific country is chosen via AHP, secondary analyses can be performed by selecting specific cities or counties within a country. AHP analysis is usually based on preferred ratings of a decision-maker (e.g., 1 to 5, 1 to 7, or 1 to 9, etc., where 1 means least preferred and a 5 means most preferred). The decision-maker assigns preferred ratings first, criterion vs. criterion and creates a Criteria Matrix. Next, he/she assigns preference ratings by alternative vs. alternative against each criterion. Once this data is collected, AHP is applied to first get the rank-ordering of criteria. Next, rank-ordering of alternatives is done against each criterion resulting in an Alternative Matrix. Finally, overall rank ordering of alternative facility locations is obtained by matrix multiplication of Alternative Matrix and Criteria Matrix. The most practical aspect of AHP is the ‘what if’ analysis that the decision-maker can conduct after the initial results to provide valuable sensitivity information of specific criteria to other criteria and alternatives.Keywords: analytic hierarchy process, multinational corporations, plant site selection, preference ratings
Procedia PDF Downloads 283163 Investigating Acute and Chronic Pain after Bariatric Surgery
Authors: Patti Kastanias, Wei Wang, Karyn Mackenzie, Sandra Robinson, Susan Wnuk
Abstract:
Obesity is a worldwide epidemic and is recognized as a chronic disease. Pain in the obese individual is a multidimensional issue. An increase in BMI is positively correlated with pain incidence and severity, especially in central obesity where individuals are twice as likely to have chronic pain. Both obesity and chronic pain are also associated with mood disorders. Pain is worse among obese individuals with depression and anxiety. Bariatric surgery provides patients with an effective solution for long-term weight loss and associated health problems. However, not much is known about acute and chronic pain after bariatric surgery and its contributing factors, including mood disorders. Nurse practitioners (NPs) at one large multidisciplinary bariatric surgery centre led two studies to examine acute and chronic pain and pain management over time after bariatric surgery. The purpose of the initial study was to examine the incidence and severity of acute and chronic pain after bariatric surgery. The aim of the secondary study was to further examine chronic pain, specifically looking at psychological factors that influence severity or incidence of both neuropathic and somatic pain as well as changes in opioid use. The initial study was a prospective, longitudinal study where patients having bariatric surgery at one surgical center were followed up to 6 months postop. Data was collected at 7 time points using validated instruments for pain severity, pain interference, and patient satisfaction. In the second study, subjects were followed longitudinally starting preoperatively and then at 6 months and 1 year postoperatively to capture changes in chronic pain and influencing variables over time. Valid and reliable instruments were utilized for all major study outcomes. In the first study, there was a trend towards decreased acute post-operative pain over time. The incidence and severity of chronic pain was found to be significantly reduced at 6 months post bariatric surgery. Interestingly, interference of chronic pain in daily life such as normal work, mood, and walking ability was significantly improved at 6 months postop however; this was not the case with sleep. Preliminary results of the secondary study indicate that pain severity, pain interference, anxiety and depression are significantly improved at 6 months postoperatively. In addition, preoperative anxiety, depression and emotional regulation were predictive of pain interference, but not pain severity. The results of our regression analyses provide evidence for the impact of pre-existing psychological factors on pain, particularly anxiety in obese populations.Keywords: bariatric surgery, mood disorders, obesity, pain
Procedia PDF Downloads 301162 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 182