Search results for: mean paltelets volume (MPV)
1544 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic
Authors: Sedat Yayla, Azhin Abdullah
Abstract:
In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)
Procedia PDF Downloads 2721543 Not Suitable for Repatriation nor Refugee Status: How Undocumented Immigrant Women Survives Street Policing
Authors: Angel Mabudusha
Abstract:
The impression created by the high volume of foreign nationals being deported by the South African Home Affairs and the police departments is that all undocumented foreign nationals insist on staying in South Africa and voluntary repatriation is open for every person. However, those foreign nationals whose request for deportation has been rejected are often not reported on especially their everyday survival as undocumented immigrant women and their encounter with the police on the street. As a result, this paper aims at exploring the everyday experiences of these women on the street and on why the number of undocumented immigrant women in this country will remain a challenge to the police department. The research was conducted in two cities in South Africa, namely: Johannesburg and Pretoria where the police, the undocumented immigrant women, the human rights lawyers and NGO officials were interviewed on this matter. Based on the idea that voluntary repatriation is open for every immigrant, this study has found that some women’ request for voluntary repatriation remain a dream that never came true. Furthermore, this article proposes more humanitarian ways of dealing with undocumented immigrant women.Keywords: repatriation, refugee status, undocumented foreign nationals, humanitarian
Procedia PDF Downloads 4181542 Soil Rehabilitation Using Modified Diatomite: Assessing Chemical Properties, Enzymatic Reactions and Heavy Metal Immobilization
Authors: Maryam Samani. Ahmad Golchin. Hosseinali Alikkani. Ahmad Baybordi
Abstract:
Natural diatomite was modified by grinding and acid treatment to increase surface area and to decrease the impurities. Surface area and pore volume of the modified diatomite were 67.45 m² g-1 and 0.105 cm³ g-¹ respectively, and used to immobilize Pb, Zn and Cu in an urban soil. The modified diatomite was added to soil samples at the rates of 2.5, 5, 7.5 and 10% and the samples incubated for 60 days. The addition of modified diatomite increased SSA of the soil. The SSAs of soils with 2.5, 5.0, 7.5 and 10% modified diatomite were 20.82, 22.02, 23.21 and 24.41 m² g-¹ respectively. Increasing the SSAs of the soils by the application of modified diatomite reduced the DTPA extractable concentrations of heavy metals compared with un-amendment control. The concentration of Pb, Zn and Cu were reduced by 91.1%, 82% and 91.1% respectively. Modified diatomite reduced the concentration of Exchangeable and Carbonate bounded species of Pb, Zn and Cu, compared with the control. Also significantly increased the concentration of Fe Mn- OX (Fe-Mn Oxides) and OM (Organic Matter) bound and Res (Residual) fraction. Modified diatomite increased the urease, dehydrogenase and alkaline phosphatase activity by 52%, 57% and 56.6% respectively.Keywords: modified diatomite, chemical specifications, specific surface area, enzyme activity, immobilization, heavy metal, soil remediation
Procedia PDF Downloads 681541 Success Factors and Challenges of Startup Businesses in a Crisis Context
Authors: Joanna Konstantinou
Abstract:
The study is about the challenges faced by entrepreneurs in a crisis context and in turbulent economies. The scope is to determine which factors, if any, are related to the success of a new business venture, such as innovation, access to funding and capital, enhanced digital skills, employment relations and organizational culture as well as a company’s strategic orientation towards international markets. The crisis context has been recorded to have affected the number of SMEs in the Greek economy, the number of people employed as well as the volume of the output produced. Although not all SMEs have been equally impacted by the crisis, which has been identified to affect certain sectors more than others, and although research is not exhaustive in that end, employment relations and patterns, firm’s age, and innovation practices in relation to employees’ learning curve seem to have a positive correlation with the successful survival and resilience of the firm. The aim is to identify important factors that can contribute positively to the success of a startup business, and that will allow businesses to acquire resilience and survive economic adversities, and it will focus on businesses of the Greek economy, the country with the longer lasting economic crisis and the findings will be lessons to learn for other economies.Keywords: entrepreneurship, innovation, crisis, challenges
Procedia PDF Downloads 2401540 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process
Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh
Abstract:
A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number
Procedia PDF Downloads 1231539 Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete
Authors: Isyaka Abdulkadir, Egbe Ngu-Ntui Ogork
Abstract:
This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control.Keywords: compressive strength, high performance concrete, scrap tyre steel fiber, splitting tensile strength
Procedia PDF Downloads 2211538 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites
Authors: G. B. Manjunatha
Abstract:
Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence
Procedia PDF Downloads 1611537 Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes
Authors: Ali Zain Ul Abadeen, Arshad Hussain
Abstract:
Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes.Keywords: carbon nanotubes, fatigue, four point bending test, modified asphalt, rutting
Procedia PDF Downloads 1511536 Weathering of a Calcarenite Stone in the Archaeological Site of Volubilis – Morocco
Authors: Issam Aalil, Kevin Beck, Khalid Cherkaoui, Xavier Brunetaud, Ali Chaaba, Muzahim Al-Mukhtar
Abstract:
Volubilis is the most important archaeological site in Morocco. It was founded in the 3rd century B.C about thirty kilometres north of Meknes and has been registered on the UNESCO World Heritage list since 1997. The site is located in a region where reigns the semi-arid continental climate, characterized by strong thermal amplitudes. A beige-yellowish calcarenite limestone is the most largely used on Volubilis site, representing about 60% of the total volume of building stones. This limestone is mainly affected by scaling and sanding according to field observations. In order to preserve monuments of this site, characterization of calcarenite weathering is essential. This work aims at investigating the nature of the dominant weathering. For this goal, mineralogical compositions of deteriorated and fresh samples are compared. Besides, the risk of damage by thermal stresses is estimated. The results of this study show that there is no major difference observed between the mineralogy of the fresh and weathered calcarenite samples. Otherwise, thermal stresses may have an important role in the weathering of calcarenite limestone by fatigue.Keywords: characterisation, stone, thermal stresses, Volubilis, weathering
Procedia PDF Downloads 3561535 The Effects of Displacer-Cylinder-Wall Conditions on the Performance of a Medium-Temperature-Differential γ-Type Stirling Engine
Authors: Wen-Lih Chen, Chao-Kuang Chen, Mao-Ju Fang, Hsiang-Cheng Hsu
Abstract:
In this study, we conducted CFD simulation to study the gas cycle of a medium-temperature-differential (MTD) γ-type Stirling engine. Mesh compression and expansion as well as overset mesh techniques are employed to simulate the moving parts of the engine. Shear-Stress Transport (SST) k-ω turbulence model has been adopted because the model is not prone to generate excessive turbulence upon impingement regions. Hence, wall heat transfer rates at the hot and cold ends will not be overestimated. The effects of several different displacer-cylinder-wall temperature setups, including smooth and finned walls, on engine performance are investigated. The results include temperature contours, pressure versus volume diagrams, and variations of heat transfer rates, indicated power, and efficiency. It is found that displacer-wall heat transfer is one of the most important factors on engine performance, and some wall-temperature setups produce better results than others.Keywords: CFD, finned wall, MTD Stirling engine, heat transfer
Procedia PDF Downloads 3811534 Tribological Behavior of Pongamia Oil Based Biodiesel Blended Lubricant at Different Load
Authors: Yashvir Singh, Amneesh Singla, Swapnil Bhurat
Abstract:
Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non toxic, and environmentally-friendly. This paper outlines the friction and wear characteristics of ponagamia biodiesel contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, Ponagamia oil based biodiesel were blended in the ratios 5, 10, and 20% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 2.5 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms was the adhesive wear. During testing, the lowest wear was found with the addition of 5 and 10% Ponagamia oil based biodiesel, and above this contamination, the wear rate was increased considerably. The addition of 5 and 10% Ponagamia oil based biodiesel with the base lubricant acted as a very good lubricant additive which reduced the friction and wear rate during the test. It has been concluded that the PBO 5 and PBO 10 can act as an alternative lubricant to increase the mechanical efficiency at 2.5 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.Keywords: friction, load, pongamia oil blend, sliding velocity, wear
Procedia PDF Downloads 3121533 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 4771532 Removal of Heavy Metal Using Continous Mode
Authors: M. Abd elfattah, M. Ossman, Nahla A. Taha
Abstract:
The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon by physical and chemical activation. The results of this study showed that it is feasible to prepare activated carbons with relatively high surface areas and pore volumes from the Egyptian rice straw by direct chemical and physical activation. The produced activated carbon from the two methods (AC1 and AC2) could be used as potential adsorbent for the removal of Fe(III) from aqueous solution contains heavy metals and polluted water. The adsorption of Fe(III) was depended on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. Based on the results, the optimum contact time is 60 minutes and adsorbent dosage is 3 g/L. The adsorption breakthrough curves obtained at different bed depths indicated increase of breakthrough time with increase in bed depths. A rise in inlet Fe(III) concentration reduces the throughput volume before the packed bed gets saturated. AC1 showed higher affinity for Fe(III) as compared to Raw rice husk.Keywords: rice straw, activated carbon, Fe(III), fixed bed column, pyrolysis
Procedia PDF Downloads 2531531 The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an Aerobic Suspension Sequencing Batch Reactor
Authors: Ali W. N. Alattabi, Clare B. Harris, Rafid M. Alkhaddar, Montserrat Ortoneda, David A. Phipps, Ali Alzeyadi, Khalid S. Hashim
Abstract:
This study was performed to optimise the hydraulic retention time (HRT) and study its effects on the sludge characteristics and the effluent quality in an aerobic suspension sequencing batch reactor (ASSBR) treating synthetic wastewater. The results showed that increasing the HRT from 6 h to 12 h significantly improved the COD and Nitrate removal efficiency; it was increased from 78.7% - 75.7% to 94.7% – 97% for COD and Nitrate respectively. However, increasing the HRT from 12 h to 18 h reduced the COD and Nitrate removal efficiency from 94.7% - 97% to 91.1% – 94.4% respectively. Moreover, Increasing the HRT from 18 h to 24 h did not affect the COD and Nitrate removal efficiency. Sludge volume index (SVI) was used to monitor the sludge settling performance. The results showed a direct relationship between the HRT and SVI value. Increasing the HRT from 6 h to 12 h led to decrease the SVI value from 123 ml/g to 82.5 ml/g, and then it remained constant despite of increasing the HRT from 12 h to 18 h and to 24 h. The results obtained from this study showed that the HRT of 12 h was better for COD and Nitrate removal and a good settling performance occurred during that range.Keywords: COD, hydraulic retention time, nitrate, sequencing batch reactor, sludge characteristics
Procedia PDF Downloads 3781530 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology
Authors: Guankai Lin, Wei Tong, Hong Zhu
Abstract:
The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method
Procedia PDF Downloads 1571529 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM
Procedia PDF Downloads 3161528 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems
Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion
Abstract:
One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.Keywords: ice accretion, interpolation, mesh deformation, radial basis functions
Procedia PDF Downloads 3181527 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1411526 Numerical Simulation of Flow Past Inline Tandem Cylinders in Uniform Shear Flow
Authors: Rajesh Bhatt, Dilip Kumar Maiti
Abstract:
The incompressible shear flow past a square cylinder placed parallel to a plane wall of side length A in presence of upstream rectangular cylinder of height 0.5A and width 0.25A in an inline tandem arrangement are numerically investigated using finite volume method. The discretized equations are solved by an implicit, time-marching, pressure correction based SIMPLE algorithm. This study provides the qualitative insight in to the dependency of basic structure (i.e. vortex shedding or suppression) of flow over the downstream square cylinder and the upstream rectangular cylinder (and hence the aerodynamic characteristics) on inter-cylinder spacing (S) and Reynolds number (Re). The spacing between the cylinders is varied systematically from S = 0.5A to S = 7.0A so the sensitivity of the flow structure between the cylinders can be inspected. A sudden jump in strouhal number is observed, which shows the transition of flow pattern in the wake of the cylinders. The results are presented at Re = 100 and 200 in term of Strouhal number, RMS and mean of lift and drag coefficients and contour plots for different spacing.Keywords: square cylinder, vortex shedding, isolated, tandem arrangement, spacing distance
Procedia PDF Downloads 5511525 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications
Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita
Abstract:
Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.Keywords: microbioreactor, cell-culture, fermentation, microfluidics
Procedia PDF Downloads 4191524 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows
Procedia PDF Downloads 2761523 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks
Authors: Mehdi Assefi, Keihan Hataminezhad
Abstract:
One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient
Procedia PDF Downloads 2941522 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 2601521 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland
Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová
Abstract:
Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.Keywords: IPAQ, nonmanual workers, physical activity, socioeconomic factors, WHO
Procedia PDF Downloads 5381520 A Model for Optimizing Inventory Replenishment and Shelf Space Management in Retail Industries
Authors: Nermine A. Harraz, Aliaa Abouali
Abstract:
The retail stores put up for sale multiple items while the spaces in the backroom and display areas constitute a scarce resource. Availability, volume, and location of the product displayed in the showroom influence the customer’s demand. Managing these operations individually will result in sub-optimal overall retail store’s profit; therefore, a non-linear integer programming model (NLIP) is developed to determine the inventory replenishment and shelf space allocation decisions that together maximize the retailer’s profit under shelf space and backroom storage constraints taking into consideration that the demand rate is positively dependent on the amount and location of items displayed in the showroom. The developed model is solved using LINGO® software. The NLIP model is implemented in a real world case study in a large retail outlet providing a large variety of products. The proposed model is validated and shows logical results when using the experimental data collected from the market.Keywords: retailing management, inventory replenishment, shelf space allocation, showroom, backroom
Procedia PDF Downloads 3561519 Enhancing Reused Lubricating Oil Performance Using Novel Ionic Liquids Based on Imidazolium Derivatives
Authors: Mohamed Deyab
Abstract:
The global lubricant additives market size was USD 14.35 billion in 2015. The industry is characterized by increasing additive usage in base oil blending for longer service life and performance. These additives improve the viscosity of oil, act as detergents, defoamers, antioxidants, and antiwear agents. Since additives play a significant role in base oil blending and subsequent formulations as they are critical materials in improving specification and performance of oils. Herein, we report on the synthesis and characterization of three imidazolium derivatives and their application as antioxidants, detergents and antiwear agents. The molecular structure and characterizations of these ionic liquids were confirmed by elemental analysis, FTIR, X-Ray Diffraction (XRD) and 1HNMR spectroscopy. Thermo gravimetric analysis (TGA), is used to study the degradation and thermal stability of the studied base stock samples. It was found that all the prepared ionic liquids additives have excellent power of dispersion and detergency. The ionic liquids as additives to engine oil reduced the friction (38%) and wear volume (76%) of steel balls. The obtained results show that the ionic liquids have an oxidation inhibitor up to 95%.Keywords: reused lubricating oil, waste, petroleum, ionic liquids
Procedia PDF Downloads 1421518 Fabrication of Hollow Germanium Spheres by Dropping Method
Authors: Kunal D. Bhagat, Truong V. Vu, John C. Wells, Hideyuki Takakura, Yu Kawano, Fumio Ogawa
Abstract:
Hollow germanium alloy quasi-spheres of diameters 1 to 2 mm with a relatively smooth inner and outer surface have been produced. The germanium was first melted at around 1273 K and then exuded from a coaxial nozzle into an inert atmosphere by argon gas supplied to the inner nozzle. The falling spheres were cooled by water spray and collected in a bucket. The spheres had a horn type of structure on the outer surface, which might be caused by volume expansion induced by the density difference between solid and gas phase. The frequency of the sphere formation was determined from the videos to be about 133 Hz. The outer diameter varied in the range of 1.3 to 1.8 mm with a wall thickness in the range of 0.2 to 0.5 mm. Solid silicon spheres are used for spherical silicon solar cells (S₃CS), which have various attractive features. Hollow S₃CS promise substantially higher energy conversion efficiency if their wall thickness can be kept to 0.1–0.2 mm and the inner surface can be passivated. Our production of hollow germanium spheres is a significant step towards the production of hollow S₃CS with, we hope, higher efficiency and lower material cost than solid S₃CS.Keywords: hollow spheres, semiconductor, compound jet, dropping method
Procedia PDF Downloads 2101517 Numerical Simulation of the Rotating Vertical Bridgman Growth
Authors: Nouri Sabrina
Abstract:
Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change
Procedia PDF Downloads 4341516 Use of Fine Recycled Aggregates in Normal Concrete Production
Authors: Vignesh Pechiappan Ayyathurai, Mukesh Limbachiya, Hsein Kew
Abstract:
There is a growing interest in using recycled, secondary use and industrial by product materials in high value commercial applications. Potential high volume applications include use of fine aggregate in flowable fill or as a component in manufactured aggregates. However, there is much scientific, as well as applied research needed in this area due to lack to availability of data on the mechanical and environmental properties of elements or products produced using fine recycled aggregates. The principle objectives of this research are to synthesize existing data on the beneficial reuse of fine recycled materials and to develop extensive testing programme for assessing and establishing engineering and long term durability properties of concrete and other construction products produced using such material for use in practical application widely. This paper is a research proposal for PhD admission. The proposed research aims to supply the necessary technical, as well as practical information on fine recycled aggregate concrete to the construction industry for promoting its wider use within the construction industry. Furthermore, to disseminate research outcomes to the local authorities for consideration of use of fine recycled aggregate concrete in various applications.Keywords: FRA, fine aggregate, recycling, concrete
Procedia PDF Downloads 3261515 Design of Experiment for Optimizing Immunoassay Microarray Printing
Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern
Abstract:
Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing
Procedia PDF Downloads 187