Search results for: inverse kinematic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17214

Search results for: inverse kinematic model

16104 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

Authors: Zina Benouaret, Djamil Aissani

Abstract:

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis

Procedia PDF Downloads 249
16103 Co-integration for Soft Commodities with Non-Constant Volatility

Authors: E. Channol, O. Collet, N. Kostyuchyk, T. Mesbah, Quoc Hoang Long Nguyen

Abstract:

In this paper, a pricing model is proposed for co-integrated commodities extending Larsson model. The futures formulae have been derived and tests have been performed with non-constant volatility. The model has been applied to energy commodities (gas, CO2, energy) and soft commodities (corn, wheat). Results show that non-constant volatility leads to more accurate short term prices, which provides better evaluation of value-at-risk and more generally improve the risk management.

Keywords: co-integration, soft commodities, risk management, value-at-risk

Procedia PDF Downloads 547
16102 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network

Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed

Abstract:

Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.

Keywords: modeling, truck rental, supply chains management.

Procedia PDF Downloads 228
16101 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124
16100 The Biomechanical Assessment of Balance and Gait for Stroke Patients and the Implications in the Diagnosis and Rehabilitation

Authors: A. Alzahrani, G. Arnold, W. Wang

Abstract:

Background: Stroke commonly occurs in middle-aged and elderly populations, and the diagnosis of early stroke is still difficult. Patients who have suffered a stroke have different balance and gait patterns from healthy people. Advanced techniques of motion analysis have been routinely used in the clinical assessment of cerebral palsy. However, so far, little research has been done on the direct diagnosis of early stroke patients using motion analysis. Objectives: The aim of this study was to investigate whether patients with stroke have different balance and gait from healthy people and which biomechanical parameters could be used to predict and diagnose potential patients who are at a potential risk to stroke. Methods: Thirteen patients with stroke were recruited as subjects whose gait and balance was analysed. Twenty normal subjects at the matched age participated in this study as a control group. All subjects’ gait and balance were collected using Vicon Nexus® to obtain the gait parameters, kinetic, and kinematic parameters of the hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 6 trials of single-leg balance for each side and 10 trials of walking. From the recorded trials, three good ones were analysed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Result: The temporal-spatial variables of Stroke subjects were compared with the healthy subjects; it was found that there was a significant difference (p < 0.05) between the groups. The step length, speed, cadence were lower in stroke subjects as compared to the healthy groups. The stroke patients group showed significantly decreased in gait speed (mean and SD: 0.85 ± 0.33 m/s), cadence ( 96.71 ± 16.14 step/min), and step length (0.509 ± 017 m) in compared to healthy people group whereas the gait speed was 1.2 ± 0.11 m/s, cadence 112 ± 8.33 step/min, and step length 0.648 ± 0.43 m. Moreover, it was observed that patients with stroke have significant differences in the ankle, hip, and knee joints’ kinematics in the sagittal and coronal planes. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g., maintaining single-leg stance time in the stroke patients showed shorter duration (5.97 ± 6.36 s) in compared to healthy people group (14.36 ± 10.20 s). Conclusion: Our result showed that there are significantly differences between stroke patients and healthy subjects in the various aspects of gait analysis and balance test, as a consequences of these findings some of the biomechanical parameters such as joints kinematics, gait parameters, and single-leg stance balance test could be used in clinical practice to predict and diagnose potential patients who are at a high risk of further stroke.

Keywords: gait analysis, kinetics, kinematics, single-leg stance, Stroke

Procedia PDF Downloads 141
16099 Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model

Authors: Ghassan Al-Dulaimi

Abstract:

This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km).

Keywords: biochemical oxygen demand, dissolved oxygen, Thames river, QUAL2K model

Procedia PDF Downloads 93
16098 Detection of Image Blur and Its Restoration for Image Enhancement

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.

Keywords: image enhancement, motion analysis, motion detection, motion estimation

Procedia PDF Downloads 287
16097 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 74
16096 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 410
16095 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
16094 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 336
16093 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava

Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík

Abstract:

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction

Procedia PDF Downloads 674
16092 A Model for Operating Rooms Scheduling

Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa

Abstract:

This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.

Keywords: generalized assignment problem, logistics, optimization, scheduling

Procedia PDF Downloads 292
16091 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit

Procedia PDF Downloads 499
16090 Haptic Robotic Glove for Tele-Exploration of Explosive Devices

Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes

Abstract:

ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.

Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation

Procedia PDF Downloads 177
16089 Improving the Run Times of Existing and Historical Demand Models Using Simple Python Scripting

Authors: Abhijeet Ostawal, Parmjit Lall

Abstract:

The run times for a large strategic model that we were managing had become too long leading to delays in project delivery, increased costs and loss in productivity. Software developers are continuously working towards developing more efficient tools by changing their algorithms and processes. The issue faced by our team was how do you apply the latest technologies on validated existing models which are based on much older versions of software that do not have the latest software capabilities. The multi-model transport model that we had could only be run in sequential assignment order. Recent upgrades to the software now allowed the assignment to be run in parallel, a concept called parallelization. Parallelization is a Python script working only within the latest version of the software. A full model transfer to the latest version was not possible due to time, budget and the potential changes in trip assignment. This article is to show the method to adapt and update the Python script in such a way that it can be used in older software versions by calling the latest version and then recalling the old version for assignment model without affecting the results. Through a process of trial-and-error run time savings of up to 30-40% have been achieved. Assignment results were maintained within the older version and through this learning process we’ve applied this methodology to other even older versions of the software resulting in huge time savings, more productivity and efficiency for both client and consultant.

Keywords: model run time, demand model, parallelisation, python scripting

Procedia PDF Downloads 118
16088 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 456
16087 Green It-Outsourcing Assurance Model for It-Outsourcing Vendors

Authors: Siffat Ullah Khan, Rahmat Ullah Khan, Rafiq Ahmad Khan, Habibullah Khan

Abstract:

Green IT or green computing has emerged as a fast growing business paradigm in recent years in order to develop energy-efficient Software and peripheral devices. With the constant evolution of technology and the world critical environmental status, all private and public information technology (IT) businesses are moving towards sustainability. We identified, through systematic literature review and questionnaire survey, 9 motivators, in total, faced by vendors in IT-Outsourcing relationship. Amongst these motivators 7 were ranked as critical motivators. We also identified 21, in total, practices for addressing these critical motivators. Based on these inputs we have developed Green IT-Outsourcing Assurance Model (GITAM) for IT-Outsourcing vendors. The model comprises four different levels. i.e. Initial, White, Green and Grey. Each level comprises different critical motivators and their relevant practices. We conclude that our model, GITAM, will assist IT-Outsourcing vendors in gauging their level in order to manage IT-Outsourcing activities in a green and sustainable fashion to assist the environment and to reduce the carbon emission. The model will assist vendors in improving their current level by suggesting various practices. The model will contribute to the body of knowledge in the field of Green IT.

Keywords: Green IT-outsourcing Assurance Model (GITAM), Systematic Literature Review, Empirical Study, Case Study

Procedia PDF Downloads 252
16086 The Investigation of Oil Price Shocks by Using a Dynamic Stochastic General Equilibrium: The Case of Iran

Authors: Bahram Fathi, Karim Alizadeh, Azam Mohammadbagheri

Abstract:

The aim of this paper is to investigate the role of oil price shocks in explaining business cycles in Iran using a dynamic stochastic general equilibrium approach. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. The model with two shocks produces different values for volatility, but these values have the same ranking as that of the actual data for most variables. In addition, the actual data are close to the ratio of standard deviations to the output obtained from the model with two shocks. The results indicate that productivity shocks are relatively more important to business cycles than the oil shocks. The model with only a productivity shock produces the most similar figures in term of volatility magnitude to that of the actual data. Next, we use the Impulse Response Functions (IRF) to evaluate the capability of the model. The IRF shows no effect of an oil shock on the capital stocks and on labor hours, which is a feature of the model. When the log-linearized system of equations is solved numerically, investment and labor hours were not found to be functions of the oil shock. This research recommends using different techniques to compare the model’s robustness. One method by which to do this is to have all decision variables as a function of the oil shock by inducing the stationary to the model differently. Another method is to impose a bond adjustment cost. This study intends to fill that gap. To achieve this objective, we derive a DSGE model that allows for the world oil price and productivity shocks. Second, we calibrate the model to the Iran economy. Next, we compare the moments from the theoretical model with both single and multiple shocks with that obtained from the actual data to see the extent to which business cycles in Iran can be explained by total oil revenue shock. Then, we use an impulse response function to evaluate the role of world oil price shocks. Finally, I present implications of the findings and interpretations in accordance with economic theory.

Keywords: oil price, shocks, dynamic stochastic general equilibrium, Iran

Procedia PDF Downloads 438
16085 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.

Keywords: agile methods, mobile apps, software process model, waterfall model

Procedia PDF Downloads 409
16084 Physical Theory for One-Dimensional Correlated Electron Systems

Authors: Nelson Nenuwe

Abstract:

The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.

Keywords: critical exponents, conformal field theory, Hubbard model, t-J model

Procedia PDF Downloads 343
16083 Modal Analysis of Small Frames using High Order Timoshenko Beams

Authors: Chadi Azoury, Assad Kallassy, Pierre Rahme

Abstract:

In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis.

Keywords: corner element, high-order Timoshenko beam, Guyan reduction, modal analysis of frames, rigid link, shear locking, and short beams

Procedia PDF Downloads 318
16082 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia

Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli

Abstract:

Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.

Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield

Procedia PDF Downloads 101
16081 The Effect of Culture and Managerial Practices on Organizational Leadership Towards Performance

Authors: Anyia Nduka, Aslan Bin Amad Senin, Ayu Azrin Bte Abdul Aziz

Abstract:

A management practice characterised by a value chain as its relatively flexible culture is replacing the old bureaucratic model of organisational practice that was built on dominance. Using a management practice fruition paradigm, the study delves into the implications of organisational culture and leadership. Developing a theory of leadership called the “cultural model” of organisational leadership by explaining how the shift from bureaucracy to management practises altered the roles and interactions of leaders. This model is well-grounded in leadership theory, considering the concept's adaptability to different leadership ideologies. In organisations where operational procedures and borders are not clearly defined, hierarchies are flattened, and work collaborations are sometimes based on contracts rather than employment. This cultural model of organizational leadership is intended to be a useful tool for predicting how effectively a leader will perform.

Keywords: leadership, organizational culture, management practices, efficiency

Procedia PDF Downloads 84
16080 'Call Drop': A Problem for Handover Minimizing the Call Drop Probability Using Analytical and Statistical Method

Authors: Anshul Gupta, T. Shankar

Abstract:

In this paper, we had analyzed the call drop to provide a good quality of service to user. By optimizing it we can increase the coverage area and also the reduction of interference and congestion created in a network. Basically handover is the transfer of call from one cell site to another site during a call. Here we have analyzed the whole network by two method-statistic model and analytic model. In statistic model we have collected all the data of a network during busy hour and normal 24 hours and in analytic model we have the equation through which we have to find the call drop probability. By avoiding unnecessary handovers we can increase the number of calls per hour. The most important parameter is co-efficient of variation on which the whole paper discussed.

Keywords: coefficient of variation, mean, standard deviation, call drop probability, handover

Procedia PDF Downloads 491
16079 Serious Game for Learning: A Model for Efficient Game Development

Authors: Zahara Abdulhussan Al-Awadai

Abstract:

In recent years, serious games have started to gain an increasing interest as a tool to support learning across different educational and training fields. It began to serve as a powerful educational tool for improving learning outcomes. In this research, we discuss the potential of virtual experiences and games research outside of the games industry and explore the multifaceted impact of serious games and related technologies on various aspects of our lives. We highlight the usage of serious games as a tool to improve education and other applications with a purpose beyond the entertainment industry. One of the main contributions of this research is proposing a model that facilitates the design and development of serious games in a flexible and easy-to-use way. This is achieved by exploring different requirements to develop a model that describes a serious game structure with a focus on both aspects of serious games (educational and entertainment aspects).

Keywords: game development, requirements, serious games, serious game model

Procedia PDF Downloads 58
16078 Computational Models for Accurate Estimation of Joint Forces

Authors: Ibrahim Elnour Abdelrahman Eltayeb

Abstract:

Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.

Keywords: joint force, joint model, optimisation problem, validation

Procedia PDF Downloads 170
16077 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio

Procedia PDF Downloads 369
16076 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications

Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan

Abstract:

High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.

Keywords: RADAR, RCS, high performance computing, point scatterer model

Procedia PDF Downloads 191
16075 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487