Search results for: game outcome prediction
3645 Long-Term Deformations of Concrete Structures
Authors: Abdelmalk Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 2643644 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3933643 A Clinical Study on the Versatility of Lateral Supra Malleolar Flap in Lower Limb Wound Reconstruction
Authors: Animesh Gupta
Abstract:
Objective: The purpose of this study is to evaluate the versatility and outcome of lateral supra malleolar flap (LSMF) in soft tissue reconstruction of the regions including the distal leg, ankle, dorsal foot and heel. Methods: From March 2021 to April 2023, 18 patients with soft tissue defects in the regions, including the distal leg, ankle, dorsal foot and heel, who underwent LSMF repair for lower limb wound reconstruction were analyzed. The location, size of the defects, etiology, outcome, complications, and other alternative options were studied and presented. Results: The follow-up period of the cases was 3-6 months after surgery. All flaps were successful; however, one flap was complicated by venous congestion and was managed by loosening a few sutures and the patient was required to elevate the affected limb to resolve the issue. Conclusion: The LSMF has numerous advantages in repairing soft tissue defects in areas involving the ankle, distal leg, heel and dorsum of the foot. In comparison to reverse sural flaps for repairing defects in the heel and lower leg, LSMF offers shorter operation time, shorter hospitalization, lower cost, and fewer postoperative complications.Keywords: lateral supra malleolar flap, LSMF, soft tissue reconstruction, lower leg defect
Procedia PDF Downloads 753642 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 2993641 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 2203640 Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo
Authors: Numair A. Siddiqui, Usman Muhammad, Manoj J. Mathew, Ramkumar M., Benjamin Sautter, Muhammad A. K. El-Ghali, David Menier, Shiqi Zhang
Abstract:
The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues.Keywords: architecture and sedimentology, subsurface rock evaluation, reservoir quality, borneo
Procedia PDF Downloads 1423639 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses
Authors: Arsalan Ghaderi
Abstract:
Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education
Procedia PDF Downloads 1143638 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock
Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi
Abstract:
Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome
Procedia PDF Downloads 3323637 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 983636 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 2423635 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Reyes, Hector Ramirez
Abstract:
In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia
Procedia PDF Downloads 1203634 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 1683633 A Development of Personalized Edutainment Contents through Storytelling
Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim
Abstract:
Recently, ‘play of learning’ became important and is emphasized as a useful learning tool. Therefore, interest in edutainment contents is growing. Storytelling is considered first as a method that improves the transmission of information and learner's interest when planning edutainment contents. In this study, we designed edutainment contents in the form of an adventure game that applies the storytelling method. This content provides questions and items constituted dynamically and reorganized learning contents through analysis of test results. It allows learners to solve various questions through effective iterative learning. As a result, the learners can reach mastery learning.Keywords: storytelling, edutainment, mastery learning, computer operating principle
Procedia PDF Downloads 3173632 The Development of a Supplementary Course in the Social Studies, Religion and Culture Learning Area in Support of ASEAN Community and for Use in the Northeastern Border Area of Thailand
Authors: Angkana Tungkasamit, Ladda Silanoi , Teerachai Nethanomsak, Sitthipon Art-in, Siribhong Bhiasiri
Abstract:
As the date for the commencement of the ASEAN Community in Year 2015 is approaching, it has become apparent to all that there is an urgent need to get Thai people ready to meet the challenge of entering into the Community confidently. Our research team has been organized by the Faculty of Education, Khon Kaen University with the task of training administrators and teachers of the schools along the borders with Laos People’s Democratic Republic and the Kingdom of Cambodia to be able to develop supplementary courses on ASEAN Community. The course to be developed is based on the essential elements of the Community, i.e. general backgrounds of the member countries, the education, social and economic life in the Community and social skills needed for a good citizen of the ASEAN Community. The study, based on learning outcome and learning management process as a basis for inquiry, was a research and development in nature using participative action research as a means to achieve the goal of helping school administrators and teachers to learn how to develop supplementary courses to be used in their schools. A post-workshop evaluation of the outcome was made and found that, besides the successfully completed supplementary course, the participants were satisfied with their participation in the workshop because they had participated in every step of the development activity, from the beginning to the end.Keywords: development of supplementary course, ASEAN community, social studies, northeastern border area of Thailand
Procedia PDF Downloads 3543631 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 963630 Casusation and Criminal Responsibility
Authors: László Schmidt
Abstract:
“Post hoc ergo propter hoc” means after it, therefore because of it. In other words: If event Y followed event X, then event Y must have been caused by event X. The question of causation has long been a central theme in philosophical thought, and many different theories have been put forward. However, causality is an essentially contested concept (ECC), as it has no universally accepted definition and is used differently in everyday, scientific, and legal thinking. In the field of law, the question of causality arises mainly in the context of establishing legal liability: in criminal law and in the rules of civil law on liability for damages arising either from breach of contract or from tort. In the study some philosophical theories of causality will be presented and how these theories correlate with legal causality. It’s quite interesting when philosophical abstractions meet the pragmatic demands of jurisprudence. In Hungarian criminal judicial practice the principle of equivalence of conditions is the generally accepted and applicable standard of causation, where all necessary conditions are considered equivalent and thus a cause. The idea is that without the trigger, the subsequent outcome would not have occurred; all the conditions that led to the subsequent outcome are equivalent. In the case where the trigger that led to the result is accompanied by an additional intervening cause, including an accidental one, independent of the perpetrator, the causal link is not broken, but at most the causal link becomes looser. The importance of the intervening causes in the outcome should be given due weight in the imposition of the sentence. According to court practice if the conduct of the offender sets in motion the causal process which led to the result, it does not exclude his criminal liability and does not interrupt the causal process if other factors, such as the victim's illness, may have contributed to it. The concausa does not break the chain of causation, i.e. the existence of a causal link establish the criminal liability of the offender. Courts also adjudicates that if an act is a cause of the result if the act cannot be omitted without the result being omitted. This essentially assumes a hypothetical elimination procedure, i.e. the act must be omitted in thought and then examined to see whether the result would still occur or whether it would be omitted. On the substantive side, the essential condition for establishing the offence is that the result must be demonstrably connected with the activity committed. The provision on the assessment of the facts beyond reasonable doubt must also apply to the causal link: that is to say, the uncertainty of the causal link between the conduct and the result of the offence precludes the perpetrator from being held liable for the result. Sometimes, however, the courts do not specify in the reasons for their judgments what standard of causation they apply, i.e. on what basis they establish the existence of (legal) causation.Keywords: causation, Hungarian criminal law, responsibility, philosophy of law
Procedia PDF Downloads 393629 The Preliminary Study of the Possible Relationship between Urban Open Space System and Residents' Health Outcome
Authors: Jia-Jin He, Tzu-Yuan Stessa Chao
Abstract:
It is generally accepted that community residents with abundant open space have better health status on average, and thus more and more cities around the world began their pursuit of the greatest possible amount of green space within urban areas through urban planning approach. Nevertheless, only a few studies managed to provide empirical evidence regarding the actual relationship between 'providing' green space and 'improving' human health at city level. There is also lack of evidence of direct positive improvement of health by increasing the amount of green space. For urban planning professional, it is important to understand citizens’ usage behaviour towards green space as a critical evidence for future planning and design strategies. There is a research need to further investigate the amount of green space, user behaviour of green spaces and the health outcome of urban dwellers. To this end, we would like to find out other important factors for urban dwellers’ usage behaviours of green spaces. 'Average green spaces per person' is one of the National well-being Indicators in Taiwan as in many other countries. Through our preliminary research, we collected and analyzed the official data of planned open space coverages, average life expectancy, exercise frequency and obesity ratio in all cities of Taiwan. The study result indicates an interesting finding that Kaohsiung city, the second largest city in Taiwan, tells a completely different story. Citizens in Kaosiung city have more open spaces than any other city through urban planning, yet have relatively unhealthy condition in contrary. Whether it pointed out that the amount of the open spaces per person has would not direct to the health outcome. Therefore, the pre-established view which states that open spaces must have positive effects on human health should be examined more prudently. Hence, this paper intends to explore the relationship between user behaviour of open spaces and citizens’ health conditions by critically analyzing past related literature and collecting selective data from government health database in 2015. We also take Kaohsiung city, as a case study area to conduct statistical analysis first followed by questionnaire survey to gain a better understanding. Finally, we aim to feedback our findings to the current planning system in Taiwan for better health promotion urbanized areas.Keywords: open spaces, urban planning systems, healthy cities, health outcomes
Procedia PDF Downloads 1653628 The MTHFR C677T Polymorphism Screening: A Challenge in Recurrent Pregnancy Loss
Authors: Rim Frikha, Nouha Bouayed, Afifa Sellami, Nozha Chakroun, Salima Daoud, Leila Keskes, Tarek Rebai
Abstract:
Introduction: Recurrent pregnancy loss (RPL) defined as two or more pregnancy losses, is a serious clinical problem. Methylene-tetrahydro-folate-reductase (MTHFR) polymorphisms, commonly the variant C677T is recognized as an inherited thrombophilia which might affect embryonic development and pregnancy success and cause pregnancy complications as RPL. Material and Methods DNA was extracted from peripheral blood samples and PCR-RFLP was performed for the molecular diagnosis of the C677T MTHFR polymorphism among 70 patients (35 couples) with more than 2 fetal losses. Aims and Objective: The aim of this study is to determine the frequency of MTHFR C677T among Tunisian couples with RPL and to critically analyze the available literature on the importance of MTHFR polymorphism testing in the management of RPL. Result and comments: No C677T mutation was detected in the carriers of RPL. This result would be related to sample size and to different criteria (number of abortion), - The association between MTHFR polymorphisms and pregnancy complications has been reported but with controversial results. - A lack of evidence for MTHFR polymorphism testing previously recommended by ACMG (American College of Medical medicine). Our study highlights the importance of screening of MTHFR polymorphism since the real impact of such thrombotic molecular defect on the pregnancy outcome is evident. - Folic supplementation of these patients during pregnancy can prevent such complications and lead to a successful pregnancy outcome.Keywords: methylenetetrahydrofolate reductase, C677T, recurrent pregnancy loss, genetic testing
Procedia PDF Downloads 3063627 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control
Procedia PDF Downloads 1623626 Application of Neuroscience in Aligning Instructional Design to Student Learning Style
Authors: Jayati Bhattacharjee
Abstract:
Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.Keywords: working memory model, learning style, prescriptive design, assessment for learning
Procedia PDF Downloads 3513625 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty
Authors: Christoph Ostermair
Abstract:
We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory
Procedia PDF Downloads 1983624 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4153623 Verification of Simulated Accumulated Precipitation
Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze
Abstract:
Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting
Procedia PDF Downloads 1473622 A Study on the Relation among Primary Care Professionals Serving Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome
Authors: Chau-Kuang Chen, Juanita Buford, Colette Davis, Raisha Allen, John Hughes, James Tyus, Dexter Samuels
Abstract:
During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the country. The elevated death and disease among ex-slaves were attributable to the unavailability of healthcare. To address the paucity of healthcare services, the College, an institution with the mission of educating minority professionals and serving the under served population, was established in 1876. This study was designed to assess if the College has accomplished its mission of serving under served communities and contributed to the elimination of health disparities in the United States. The study objective was to quantify the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities, which, in turn, was significantly associated with a health professional shortage score partly designated by the U.S. Department of Health and Human Services. Various statistical methods were used to analyze the alumni data in years 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates into the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t test was performed to detect the significant mean differences for clustering and criterion variables between Disadvantaged and Non-disadvantaged Communities, which confirms the “content” validity of cluster analysis model. Chi-square test was used to assess if the proportion of cluster groups (Disadvantaged vs Non-disadvantaged Communities) were consistent with that of practicing specialties (primary care vs. non-primary care). Finally, the partial least squares (PLS) path model was constructed to explore the “construct” validity of analytics model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving disadvantaged community. The social ecological theory along with statistical models mentioned was used to establish the relationship between medical and dental graduates (primary care professionals serving disadvantaged communities) and their social environments (socioeconomic status, adverse health outcome, health professional shortage score). Based on social ecological framework, it was hypothesized that the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities could be quantified. Also, primary care professionals serving disadvantaged communities related to a health professional shortage score can be measured. Adverse health outcome (adult obesity rate, age-adjusted premature mortality rate, and percent of people diagnosed with diabetes) could be affected by the latent variable, namely socioeconomic status (unemployment rate, poverty rate, percent of children who were in free lunch programs, and percent of uninsured adults). The study results indicated that approximately 83% (3,192/3,864) of the College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. In addition, the PLS path modeling demonstrated that primary care professionals serving disadvantaged community was significantly associated with socioeconomic status and adverse health outcome (p < .001). In summary, the majority of medical and dental graduates from the College provide primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcomes, which demonstrate that the College has fulfilled its mission.Keywords: disadvantaged community, K-means cluster analysis, PLS path modeling, primary care
Procedia PDF Downloads 5503621 Pregnancy and Birth Outcomes of Single versus Multiple Embryo Transfer in Gestational Surrogacy Arrangements: A Systematic Review
Authors: Jutharat Attawet, Alex Y. Wang, Cindy M. Farquhar, Elizabeth A. Sullivan
Abstract:
Background: Adverse maternal and perinatal outcomes of multiple pregnancies resulting from multiple embryo transfers (ET) has become significant concerns. This is particularly relevant for gestational carriers since they usually do not have infertility issues. Single embryo transfer (SET) therefore has been encouraged to assist reproductive technology (ART) practice in order to reduce multiple pregnancies. Objectives: This systematic review aims to investigate the pregnancy and birth outcomes of SET and multiple ET in surrogacy arrangements. Search methods: This study is a systematic review. Electronic databases were searched from CINAHL, Medline, Embase, Scopus and ProQuest for studies from 1980 to 2017. Cross-references and national ART reports were also manual searchings. Articles without restriction of English language and study types were accessed. Carrier cycles involving in SET and multiple ET were identified in database searching. The main outcome measures including clinical pregnancy, live delivery and multiple deliveries per gestational carrier cycle were compared between SET and multiple ET. Mantel-Haenzel risk ratios (RRs) with 95% confidence intervals (CIs), using the numbers of outcome events in SET and multiple ET of each study were calculated suing RevMan5.3. Outcomes: The search returned 97 articles of which 5 met the inclusion criteria. Approximately 50% of carrier cycles were transferred a single embryo and 50% were transferred more than one embryo. The clinical pregnancy rate (CPR) was 39% for SET and 53% for multiple ET, which was not significantly different with RR = 0.83 (95% CI: 0.67-1.03). The live delivery rate was 33% for SET and 57% for multiple ET which was not significantly different with RR = 0.78 (95% CI: 0.61-1.00). The multiple delivery rate per carrier was greater risks in the multiple ET carrier cycles (RR =0.4, 95% CI: 0.01-0.26). There were 104 sets of twins (including one set of twins selectively reduced from triplets to twins) and 1 set of triples in the multiple ET carrier cycle. In the SET carrier cycles, there were 2 sets of twins. Significance of the study: SET should be advocated among surrogate carriers to prevent multiple pregnancies and subsequent adverse outcomes for both carrier and baby. Surrogacy practice should be reviewed and surrogate carriers should be fully informed of the risk of adverse maternal and birth outcome of multiple pregnancies due to multiple embryo transfers.Keywords: assisted reproduction, birth outcomes, carrier, gestational surrogacy, multiple embryo transfer, multiple pregnancy, pregnancy outcomes, single embryo transfer, surrogate mother, systematic review
Procedia PDF Downloads 4043620 Testing and Validation Stochastic Models in Epidemiology
Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa
Abstract:
This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions
Procedia PDF Downloads 63619 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4893618 Treatment Outcome Of Corneal Ulcers Using Levofloxacin Hydrate 1.5% Ophthalmic Solution And Adjuvant Oral Ciprofloxacin, A Treatment Strategy Applicable To Primary Healthcare
Authors: Celine Shi Ying Lee, Jong Jian Lee
Abstract:
Background: Infectious keratitis is one of the leading causes of blindness worldwide. Prompt treatment with effective medication will control the infection early, preventing corneal scarring and visual loss. fluoroquinolones ophthalmic medication is used because of its broad-spectrum properties, potency, good intraocular penetration, and low toxicity. The study aims to evaluate the treatment outcome of corneal ulcers using Levofloxacin 1.5% ophthalmic solution (LVFX) with adjuvant oral ciprofloxacin when indicated and apply this treatment strategy in primary health care as first-line treatment. Methods: Patients with infective corneal ulcer treated in an eye center were recruited. Inclusion criteria includes Corneal infection consistent with bacterial keratitis, single or multiple small corneal ulcers. Treatment regime: LVFX hourly for the first 2 days, 2 hourly from the 3rd day, and 3 hourly on the 5th day of review. Adjuvant oral ciprofloxacin 500mg BD was administered for 5 days if there were multiple corneal ulcers or when the location of the cornea ulcer was central or paracentral. Results: 47 subjects were recruited. There were 16 (34%) males and 31 (66%) females. 40 subjects (85%) were contact lens (CL) related to corneal ulcer, and 7 subjects (15%) were non-contact lens related. 42 subjects (89%) presented with one ulcer, of which 20 of them (48%) needed adjuvant therapy. 5 subjects presented with 2 or 3 ulcers, of which 3 needed adjuvant therapy. A total of 23 subjects (49%) was given adjuvant therapy (oral ciprofloxacin 500mg BD for 5 days).21 of them (91%) were CL related. All subjects recovered fully, and the average duration of treatment was 3.7 days, with 49% of the subjects resolved on the 3rd day, 38% on the 5thday of and 13% on the 7thday. All subjects showed symptoms of relief of pain, light-sensitivity, and redness on the 3rd day with full visual recovery post-treatment. No adverse drug reactions were recorded. Conclusion: Our treatment regime demonstrated good clinical outcome as first-line treatment for corneal ulcers. A corneal ulcer is a common eye condition in Singapore, mainly due to CL wear. Pseudomonas aeruginosa is the most frequent and potentially sight-threatening pathogen involved in CL related corneal ulcer. Coagulase-negative Staphylococci, Staphylococcus aureus, and Streptococcus Pneumoniae were seen in non-CL users. All these bacteria exhibit good sensitivity rates to ciprofloxacin and levofloxacin. It is therefore logical in our study to use LVFX Eyedrops and adjuvant ciprofloxacin oral antibiotics when indicated as first line treatment for most corneal ulcers. Our study of patients, both CL related and non-CL related, have shown good clinical response and full recovery using the above treatment strategy. There was also a full restoration of visual acuity in all the patients. Eye-trained primary Healthcare practitioners can consider adopting this treatment strategy as first line treatment in patients with corneal ulcers. This is relevant during the COVID pandemic, where hospitals are overwhelmed with patients and in regions with limited access to specialist eye care. This strategy would enable early treatment with better clinical outcome.Keywords: corneal ulcer, levofloxacin hydrate, treatment strategy, ciprofloxacin
Procedia PDF Downloads 1753617 Post 2014 Afghanistan and Its Implications on Pakistan
Authors: Naad-E-Ali Sulehria
Abstract:
This paper unfolds the facts and findings of Afghan scenario particularly its implications on Pakistan. At present, the Post 2014 withdrawal of US and ISAF combat forces from Afghan land is one of the up-to-the-minute issues among analysts of international relations. Deliberating from the current situation of Afghanistan towards its future prospects and the elements vibrating Afghanistan's internal dynamics, as well as exploitation of its resources by other states and non-state actors, are discussed accordingly. Moreover, the reasons behind such a paradigm shift in US foreign policy are tried to be contemplated with first hand knowledge. It is investigated that 'what is the current image of Afghanistan in today's world?', 'what will be its future aspects?', and 'what sort of Afghanistan does Pakistan foresees' as the concerned area of discussion.Keywords: Afghanistan, Pakistan, new great game, taliban
Procedia PDF Downloads 3003616 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 94