Search results for: diagnostic image
2678 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 2022677 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 1702676 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators
Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon
Abstract:
A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.Keywords: PET-CT, PET-MRI, TOF-PET, scintillator
Procedia PDF Downloads 4972675 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images
Procedia PDF Downloads 4272674 Late Roman-Byzantine Glass Bracelet Finds at Amorium and Comparison with Other Cultures
Authors: Atilla Tekin
Abstract:
Amorium was one of the biggest cities of Byzantine Empire, located under and around the modern village of Hisarköy, Emirdağ, Afyonkarahisar Province, Turkey. It was situated on the routes of trades and Byzantine military road from Constantinople to Cilicia. In addition, it was on the routes of trades and a center of bishopric. After Arab invasion, Amorium gradually lost importance. The research consists of 1372 pieces of glass bracelet finds from mostly at 1998- 2009 excavations. Most of them were found as glass bracelets fragments. The fragments are of various size, forms, colors, and decorations. During the research, they were measured and grouped according to their crossings, at first. After being photographed, they were sketched by Adobe Illustrator and decoupaged by Photoshop. All forms, colors, and decorations were specified and compared to each other. Thus, they have been tried to be dated and uncovered the place of manufacture. The importance of the research is presenting the perception of image and admiration and comparing with other cultures.Keywords: Amorium, glass bracelets, image, Byzantine empire, jewelry
Procedia PDF Downloads 1972673 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi
Abstract:
One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)
Procedia PDF Downloads 4412672 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1232671 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 4042670 Eosinopenia: Marker for Early Diagnosis of Enteric Fever
Authors: Swati Kapoor, Rajeev Upreti, Monica Mahajan, Abhaya Indrayan, Dinesh Srivastava
Abstract:
Enteric Fever is caused by gram negative bacilli Salmonella typhi and paratyphi. It is associated with high morbidity and mortality worldwide. Timely initiation of treatment is a crucial step for prevention of any complications. Cultures of body fluids are diagnostic, but not always conclusive or practically feasible in most centers. Moreover, the results of cultures delay the treatment initiation. Serological tests lack diagnostic value. The blood counts can offer a promising option in diagnosis. A retrospective study to find out the relevance of leucopenia and eosinopenia was conducted on 203 culture proven enteric fever patients and 159 culture proven non-enteric fever patients in a tertiary care hospital in New Delhi. The patient details were retrieved from the electronic medical records section of the hospital. Absolute eosinopenia was considered as absolute eosinophil count (AEC) of less than 40/mm³ (normal level: 40-400/mm³) using LH-750 Beckman Coulter Automated machine. Leucopoenia was defined as total leucocyte count (TLC) of less than 4 X 10⁹/l. Blood cultures were done using BacT/ALERT FA plus automated blood culture system before first antibiotic dose was given. Case and control groups were compared using Pearson Chi square test. It was observed that absolute eosinophil count (AEC) of 0-19/mm³ was a significant finding (p < 0.001) in enteric fever patients, whereas leucopenia was not a significant finding (p=0.096). Using Receiving Operating Characteristic (ROC) curves, it was observed that patients with both AEC < 14/mm³ and TCL < 8 x 10⁹/l had 95.6% chance of being diagnosed as enteric fever and only 4.4% chance of being diagnosed as non-enteric fever. This result was highly significant with p < 0.001. This is a very useful association of AEC and TLC found in enteric fever patients of this study which can be used for the early initiation of treatment in clinically suspected enteric fever patients.Keywords: absolute eosinopenia, absolute eosinophil count, enteric fever, leucopenia, total leucocyte count
Procedia PDF Downloads 1722669 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 1652668 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'
Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi
Abstract:
Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image
Procedia PDF Downloads 1422667 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 1902666 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique
Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham
Abstract:
Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT
Procedia PDF Downloads 1902665 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 752664 Helicobacter Pylori Detection by Invasive and Noninvasive Diagnostic Tests from Dyspepsia Patients
Authors: Muhammad Suhail Ibrahim, Ahmad Mujtaba
Abstract:
Background: The accuracy of the most frequently used tests for diagnosing Helicobacter pylori is always under consideration in clinical settings. A reliable diagnosis is crucial to confirm the success of therapy. Objective: The aim of this research was to study the isolation frequency of H. pylori from patients compatible with gastritis or gastric ulcer and to compare some feasible non-invasive and invasive methods for the diagnosis of infection. Materials and Methods: Ninety-six gastric biopsy and blood samples were obtained with various gastroduodenal symptoms after obtaining informed consent. The biopsies were analyzed and compared using the culture, microscopic examination, histopathology, Rapid urease RUT), serology, biochemical, antibiotic susceptibility test and molecular method. Results: A number of 40 (41.67%) were considered H. pylori positive in both histopathology and RUT. On the other hand, 46 patients were positive against anti IgA and IgG by ELISA. Eighteen biopsies were positive according to the culture test. This was further confirmed by endoscopic examination, urease, catalase and oxidase tests. A high percentage of resistance to polymyxin B, amoxicillin, and kanamycin was observed (100, 88.89, and 77.78%, respectively). A gene (Cag A) was also detected by using molecular technique which appeared positive in 16 patients. The sensitivity/specificity (%) of diagnostic method was 95/77 for histology, 100/83.5 for rapid urease, 85.7/90 for gram staining, 100/66.6 for IgG serology, 100/79.5 for IgA serology, 100/75.0 for PCR, 100/79.04 for combination of RUT and IgG serology and 100/92.4 for combination of RUT, gram staining and IgG serology. Conclusion: In view of the result obtained, PCR appeared to be the most reliable test. However, higher sensitivity and specificity were also recorded for other tests. So, for more accurate results, it is advisable not to rely solely on a single method for detection.Keywords: helicobacter pylori, isolation, detection, culture, urease, polymerase chain reaction, antibiotic susceptibility test, dyspeptic patients
Procedia PDF Downloads 672663 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging
Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp
Abstract:
Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging
Procedia PDF Downloads 4652662 C-Spine Imaging in a Non-trauma Centre: Compliance with NEXUS Criteria Audit
Authors: Andrew White, Abigail Lowe, Kory Watkins, Hamed Akhlaghi, Nicole Winter
Abstract:
The timing and appropriateness of diagnostic imaging are critical to the evaluation and management of traumatic injuries. Within the subclass of trauma patients, the prevalence of c-spine injury is less than 4%. However, the incidence of delayed diagnosis within this cohort has been documented as up to 20%, with inadequate radiological examination most cited issue. In order to assess those in which c-spine injury cannot be fully excluded based on clinical examination alone and, therefore, should undergo diagnostic imaging, a set of criteria is used to provide clinical guidance. The NEXUS (National Emergency X-Radiography Utilisation Study) criteria is a validated clinical decision-making tool used to facilitate selective c-spine radiography. The criteria allow clinicians to determine whether cervical spine imaging can be safely avoided in appropriate patients. The NEXUS criteria are widely used within the Emergency Department setting given their ease of use and relatively straightforward application and are used in the Victorian State Trauma System’s guidelines. This audit utilized retrospective data collection to examine the concordance of c-spine imaging in trauma patients to that of the NEXUS criteria and assess compliance with state guidance on diagnostic imaging in trauma. Of the 183 patients that presented with trauma to the head, neck, or face (244 excluded due to incorrect triage), 98 did not undergo imaging of the c-spine. Out of those 98, 44% fulfilled at least one of the NEXUS criteria, meaning the c-spine could not be clinically cleared as per the current guidelines. The criterion most met was intoxication, comprising 42% (18 of 43), with midline spinal tenderness (or absence of documentation of this) the second most common with 23% (10 of 43). Intoxication being the most met criteria is significant but not unexpected given the cohort of patients seen at St Vincent’s and within many emergency departments in general. Given these patients will always meet NEXUS criteria, an element of clinical judgment is likely needed, or concurrent use of the Canadian C-Spine Rules to exclude the need for imaging. Midline tenderness as a met criterion was often in the context of poor or absent documentation relating to this, emphasizing the importance of clear and accurate assessments. The distracting injury was identified in 7 out of the 43 patients; however, only one of these patients exhibited a thoracic injury (T11 compression fracture), with the remainder comprising injuries to the extremities – some studies suggest that C-spine imaging may not be required in the evaluable blunt trauma patient despite distracting injuries in any body regions that do not involve the upper chest. This emphasises the need for standardised definitions for distracting injury, at least at a departmental/regional level. The data highlights the currently poor application of the NEXUS guidelines, with likely common themes throughout emergency departments, highlighting the need for further education regarding implementation and potential refinement/clarification of criteria. Of note, there appeared to be no significant differences between levels of experience with respect to inappropriately clearing the c-spine clinically with respect to the guidelines.Keywords: imaging, guidelines, emergency medicine, audit
Procedia PDF Downloads 722661 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths
Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang
Abstract:
In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday
Procedia PDF Downloads 2532660 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 2312659 Examining Factors Influencing Career Choice Among Young Muslim Arab Women in Nursing
Authors: Merav Ben Natan, Miriam Abo El Hadi, Fardus Zoubi
Abstract:
Aim: This study investigates the factors that motivate young Muslim Arab women to pursue nursing careers, focusing on the impact of nurse uniforms, the COVID-19 pandemic, and perceptions of nurses and the nursing profession. The aim is to draw insights that can inform policy strategies. Background: The global shortage of nursing professionals is a pressing concern, even in regions like Israel. Attracting and retaining young Muslim Arab women in nursing is essential for addressing this shortage. To better understand their career decisions, it is crucial to examine the influence of nurse uniforms, the pandemic, and perceptions related to nurses and the nursing profession. Methods: This cross-sectional study employed digital questionnaires, which were administered to 200 Muslim Arab women between the ages of 20 and 30 in Israel. Results: Only 29.2% of the participants indicated an interest in pursuing a nursing career. The study findings revealed a noteworthy positive correlation between the pandemic's impact and the intention to pursue nursing. Further analysis, using linear regression, elucidated the role of factors such as the white nurse uniform, perceptions of nurses, and the image of the nursing profession in influencing career choices in nursing. Discussion: This study underscores the significance of nurse uniforms, the image of nurses, and the perception of the nursing profession in shaping the career choices of young Muslim Arab women in nursing. Policy interventions should prioritize raising awareness about diverse nursing roles, expanding nurses' responsibilities, and highlighting their invaluable contributions to society.Keywords: nursing image, uniform, nursing career, nurse profession
Procedia PDF Downloads 862658 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils
Procedia PDF Downloads 3062657 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia
Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze
Abstract:
Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image
Procedia PDF Downloads 2772656 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm
Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes
Abstract:
In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction
Procedia PDF Downloads 1442655 Study on Pedestrian Street Reconstruction under Comfortable Continuous View: Take the Walking Streets of Zhengzhou City as an Example
Authors: Liu Mingxin
Abstract:
Streets act as the organizers of each image element on the urban spatial route, and the spatial continuity of urban streets is the basis for people to perceive the overall image of the city. This paper takes the walking space of Zhengzhou city as the research object, conducts investigation and analysis through questionnaire interviews, and selects typical walking space for in-depth study. Through the analysis of questionnaire data, the investigation and analysis of the current situation of walking space, and the analysis of pedestrian psychological behavior activities, the paper summarizes the construction suggestions of urban walking space continuity from the three aspects of the composition of walking street, the bottom interface and side interface, and the service facilities of walking space. The walking space is not only the traffic space but also the comfortable experience and the continuity of the space.Keywords: walking space, spatial continuity, walking psychology, space reconstruction
Procedia PDF Downloads 542654 Dose Saving and Image Quality Evaluation for Computed Tomography Head Scanning with Eye Protection
Authors: Yuan-Hao Lee, Chia-Wei Lee, Ming-Fang Lin, Tzu-Huei Wu, Chih-Hsiang Ko, Wing P. Chan
Abstract:
Computed tomography (CT) scan of the head is a good method for investigating cranial lesions. However, radiation-induced oxidative stress can be accumulated in the eyes and promote carcinogenesis and cataract. In this regard, we aimed to protect the eyes with barium sulfate shield(s) during CT scans and investigate the resultant image quality and radiation dose to the eye. Patients who underwent health examinations were selectively enrolled in this study in compliance with the protocol approved by the Ethics Committee of the Joint Institutional Review Board at Taipei Medical University. Participants’ brains were scanned with a water-based marker simultaneously by a multislice CT scanner (SOMATON Definition Flash) under a fixed tube current-time setting or automatic tube current modulation (TCM). The lens dose was measured by Gafchromic films, whose dose response curve was previously fitted using thermoluminescent dosimeters, with or without barium sulfate or bismuth-antimony shield laid above. For the assessment of image quality CT images at slice planes that exhibit the interested regions on the zygomatic, orbital and nasal bones of the head phantom as well as the water-based marker were used for calculating the signal-to-noise and contrast-to-noise ratios. The application of barium sulfate and bismuth-antimony shields decreased 24% and 47% of the lens dose on average, respectively. Under topogram-based TCM, the dose saving power of bismuth-antimony shield was mitigated whereas that of barium sulfate shield was enhanced. On the other hand, the signal-to-noise and contrast-to-noise ratios of DSCT images were decreased separately by barium sulfate and bismuth-antimony shield, resulting in an overall reduction of the CNR. In contrast, the integration of topogram-based TCM elevated signal difference between the ROIs on the zygomatic bones and eyeballs while preferentially decreasing the signal-to-noise ratios upon the use of barium sulfate shield. The results of this study indicate that the balance between eye exposure and image quality can be optimized by combining eye shields with topogram-based TCM on the multislice scanner. Eye shielding could change the photon attenuation characteristics of tissues that are close to the shield. The application of both shields on eye protection hence is not recommended for seeking intraorbital lesions.Keywords: computed tomography, barium sulfate shield, dose saving, image quality
Procedia PDF Downloads 2692653 Serum MicroRNA and Inflammatory Mediators: Diagnostic Biomarkers for Endometritis in Arabian Mares
Authors: Sally Ibrahim, Mohamed Hedia, Mohamed Taqi, Mohamed Derbala, Karima Mahmoud, Youssef Ahmed, Sayed Ismail, Mohamed El-Belely
Abstract:
The identification and quantification of serum microRNA (miRNA) from mares with endometritis might serve as useful and implementable clinical biomarkers for the early diagnosis of endometiritis. Aims of the current study were (I) to study the expression pattern of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205, and (II) to determine the levels of interleukin 6 (IL-6), prostaglandins (PGF₂α and PGE₂), in the serum of Arabian mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares (4-14 years old). Mares were divided into 48 sub-fertile mares suspected of endometritis and 32 fertile at stud farms. The criteria for mares to be enrolled in the endometritis group were that they had been bred three or more times unsuccessfully in the breeding season or had a history of more than one year of reproductive failure. In addition, two or more of the following criteria on a checklist were present: abnormal clinical findings, transrectal ultrasonographic uterine examination showed abnormal fluid in the uterus (echogenic or ≥2 cm in diameter), positive endometrial cytology; and bacterial and/or fungal growth. Serum samples were collected for measuring IL-6, PGF₂α, and PGE₂ concentrations, as well as serum miRNA isolation and quantitative real-time PCR. Serum concentrations of IL-6, PGE₂, and PGF₂α were higher (P ≤ 0.001) in mares with endometritis compared to the control healthy ones. The expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 increased (P≤0.001) in mares with endometritis compared to the control ones. To the best of our knowledge, this is the first study that revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE₂, and PGF₂α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares. Moreover, estimation of the serum concentrations of serum miRNA, IL-6, PGE₂, and PGF₂α is a promising recommended tool during the breeding soundness examination in mares.Keywords: Arabian Mares, endometritis, inflammatory mediators, serum miRNA
Procedia PDF Downloads 1812652 Innovative Screening Tool Based on Physical Properties of Blood
Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan
Abstract:
This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability
Procedia PDF Downloads 3762651 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows
Authors: Mina Esmi Jahromi, Mehdi Khiadani
Abstract:
Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.Keywords: air entrainment, image processing, jet in cross flow, two-phase flow
Procedia PDF Downloads 3692650 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections
Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández
Abstract:
Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control
Procedia PDF Downloads 232649 Language Effects on the Prestige and Product Image of Advertised Smartphone in Consumer Purchases in Indonesia
Authors: Vidyarini Dwita, Rebecca Fanany
Abstract:
This study will discuss the growth of the market for smartphone technology in Indonesia. This country, with the world’s fourth largest population, has a reputation as the social media capital of the world, and this reputation is largely justified. The penetration of social media is high in Indonesia which has one of the largest global markets. Most Indonesian users of Facebook, Twitter and other social media platforms access the sites from their mobile phones. Indonesia is expected to continue to be a major market for digital mobile devices, such as smartphone and tablets that can access the internet. The aim of this study to describe the way responses of Indonesian consumers to smartphone advertising using English and Indonesian will impact on their perceptions of the prestige and product image of the advertised items and thus influence consumer intention to purchase the item. Advertising for smartphones and similar products is intense and dynamic and often draws on the social attitudes of Indonesians with respect to linguistic and cultural content and especially appeals to their desire to be part of global mainstream culture. The study uses a qualitative method based on in-depth interviews with 30 participants. Content analysis is employed to analyse the responses of Indonesian consumers to smartphone advertising that uses English and Indonesian text. Its findings indicate that consumers’ impressions of English and Indonesian slogans influence their attitudes toward smartphones, suggesting that linguistic context plays a role in influencing consumer purchases.Keywords: consumer purchases, marketing communication, product image, smartphone advertising, sociolinguistic
Procedia PDF Downloads 224