Search results for: deep learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23117

Search results for: deep learning model

22007 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts

Authors: Mei-Hui Liu

Abstract:

This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.

Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome

Procedia PDF Downloads 225
22006 Avatar Creation for E-Learning

Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud

Abstract:

Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.

Keywords: avatar, e-learning, higher education, students' perception

Procedia PDF Downloads 411
22005 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient

Authors: Sobhy Fathy A. Hashesh

Abstract:

This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: Al Andalus, emotional quotient, students, academic performance development

Procedia PDF Downloads 238
22004 Emotional Labor Strategies and Intentions to Quit among Nurses in Pakistan

Authors: Maham Malik, Amjad Ali, Muhammad Asif

Abstract:

Current study aims to examine the relationship of emotional labor strategies - deep acting and surface acting - with employees' job satisfaction, organizational commitment and intentions to quit. The study also examines the mediating role of job satisfaction and organizational commitment for relationship of emotional labor strategies with intentions to quit. Data were conveniently collected from 307 nurses by using self-administered questionnaire. Linear regression test was applied to find the relationship between the variables. Mediation was checked through Baron and Kenny Model and Sobel test. Results prove the existence of partial mediation of job satisfaction between the emotional labor strategies and quitting intentions. The study recommends that deep acting should be promoted because it is positively associated with quality of work life, work engagement and organizational citizenship behavior of employees.

Keywords: emotional labor strategies, intentions to quit, job satisfaction, organizational commitment, nursing

Procedia PDF Downloads 147
22003 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features

Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh

Abstract:

This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.

Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal

Procedia PDF Downloads 104
22002 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
22001 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list

Procedia PDF Downloads 292
22000 The Effectiveness of Lesson Study via Learning Communities in Increasing Instructional Self-Efficacy of Beginning Special Educators

Authors: David D. Hampton

Abstract:

Lesson study is used as an instructional technique to promote both student and faculty learning. However, little is known about the usefulness of learning communities in supporting results of lesson study on the self-efficacy and development for tenure-track faculty. This study investigated the impact of participation in a lesson study learning community on 34 new faculty members at a mid-size Midwestern University, specifically regarding implementing lesson study evaluations by new faculty on their reported self-efficacy. Results indicate that participation in a lesson study learning community significantly increased faculty members’ lesson study self-efficacy as well as grant and manuscript production over one academic year. Suggestions for future lesson study around faculty learning communities are discussed.

Keywords: lesson study, learning community, lesson study self-efficacy, new faculty

Procedia PDF Downloads 150
21999 Obsessive-Compulsive Disorder: Development of Demand-Controlled Deep Brain Stimulation with Methods from Stochastic Phase Resetting

Authors: Mahdi Akhbardeh

Abstract:

Synchronization of neuronal firing is a hallmark of several neurological diseases. Recently, stimulation techniques have been developed which make it possible to desynchronize oscillatory neuronal activity in a mild and effective way, without suppressing the neurons' firing. As yet, these techniques are being used to establish demand-controlled deep brain stimulation (DBS) techniques for the therapy of movement disorders like severe Parkinson's disease or essential tremor. We here present a first conceptualization suggesting that the nucleus accumbens is a promising target for the standard, that is, permanent high-frequency, DBS in patients with severe and chronic obsessive-compulsive disorder (OCD). In addition, we explain how demand-controlled DBS techniques may be applied to the therapy of OCD in those cases that are refractory to behavioral therapies and pharmacological treatment.

Keywords: stereotactic neurosurgery, deep brain stimulation, obsessive-compulsive disorder, phase resetting

Procedia PDF Downloads 512
21998 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 188
21997 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage

Authors: Ashraf Ibrahim Awad

Abstract:

It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.

Keywords: knowledge management, e-learning, learning integration, universities, UAE

Procedia PDF Downloads 507
21996 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri

Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham

Abstract:

Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.

Keywords: learning preference, VARK, learning style, nursing

Procedia PDF Downloads 359
21995 Evaluating the Effectiveness of Digital Game-Based Learning on Educational Outcomes of Students with Special Needs in an Inclusive Classroom

Authors: Shafaq Rubab

Abstract:

The inclusion of special needs students in a classroom is prevailing gradually in developing countries. Digital game-based learning is one the most effective instructional methodology for special needs students. Digital game-based learning facilitates special needs students who actually face challenges and obstacles in their learning processes. This study aimed to evaluate the effectiveness of digital game-based learning on the educational progress of special needs students in developing countries. The quasi-experimental research was conducted by using purposively selected sample size of eight special needs students. Results of both experimental and control group showed that performance of the experimental group students was better than the control group students and there was a significant difference between both groups’ results. This research strongly recommended that digital game-based learning can help special needs students in an inclusive classroom. It also revealed that special needs students can learn efficiently by using pedagogically sound learning games and game-based learning helps a lot for the self-paced fast-track learning system.

Keywords: inclusive education, special needs, digital game-based learning, fast-track learning

Procedia PDF Downloads 294
21994 Introducing and Effectiveness Evaluation of Innovative Logistics System Simulation Teaching: Theoretical Integration and Verification

Authors: Tsai-Pei Liu, Zhi-Rou Zheng, Tzu-Tzu Wen

Abstract:

Innovative logistics system simulation teaching is to extract the characteristics of the system through simulation methodology. The system has randomness and interaction problems in the execution time. Therefore, the simulation model can usually deal with more complex logistics process problems, giving students different learning modes. Students have more autonomy in learning time and learning progress. System simulation has become a new educational tool, but it still needs to accept many tests to use it in the teaching field. Although many business management departments in Taiwan have started to promote, this kind of simulation system teaching is still not popular, and the prerequisite for popularization is to be supported by students. This research uses an extension of Integration Unified Theory of Acceptance and Use of Technology (UTAUT2) to explore the acceptance of students in universities of science and technology to use system simulation as a learning tool. At the same time, it is hoped that this innovation can explore the effectiveness of the logistics system simulation after the introduction of teaching. The results indicated the significant influence of performance expectancy, social influence and learning value on students’ intention towards confirmed the influence of facilitating conditions and behavioral intention. The extended UTAUT2 framework helps in understanding students’ perceived value in the innovative logistics system teaching context.

Keywords: UTAUT2, logistics system simulation, learning value, Taiwan

Procedia PDF Downloads 115
21993 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels

Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade

Abstract:

Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.

Keywords: cavitation, petroleum, separation, sulphur removal

Procedia PDF Downloads 379
21992 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
21991 The Differences in Skill Performance Between Online and Conventional Learning Among Nursing Students

Authors: Nurul Nadrah

Abstract:

As a result of the COVID-19 pandemic, a movement control order was implemented, leading to the adoption of online learning as a substitute for conventional classroom instruction. Thus, this study aims to determine the differences in skill performance between online learning and conventional methods among nursing students. We employed a quasi-experimental design with purposive sampling, involving a total of 59 nursing students, and used online learning as the intervention. As a result, the study found there was a significant difference in student skill performance between online learning and conventional methods. As a conclusion, in times of hardship, it is necessary to implement alternative pedagogical approaches, especially in critical fields like nursing, to ensure the uninterrupted progression of educational programs. This study suggests that online learning can be effectively employed as a means of imparting knowledge to nursing students during their training.

Keywords: nursing education, online learning, skill performance, conventional learning method

Procedia PDF Downloads 47
21990 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical

Authors: Weiwei Xie, Yichao Li

Abstract:

The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.

Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process

Procedia PDF Downloads 155
21989 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 39
21988 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 11
21987 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 29
21986 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 143
21985 Analyzing Corporate Employee Preferences for E-Learning Platforms: A Survey-Based Approach to Knowledge Updation

Authors: Sandhyarani Mahananda

Abstract:

This study investigates the preferences of corporate employees for knowledge updates on the e-learning platform. The researchers explore the factors influencing their platform choices through a survey administered to employees across diverse industries and job roles. The survey examines preferences for specific platforms (e.g., Coursera, Udemy, LinkedIn Learning). It assesses the importance of content relevance, platform usability, mobile accessibility, and integration with workplace learning management systems. Preliminary findings indicate a preference for platforms that offer curated, job-relevant content, personalized learning paths, and seamless integration with employer-provided learning resources. This research provides valuable insights for organizations seeking to optimize their investment in e-learning and enhance employee knowledge development.

Keywords: corporate training, e-learning platforms, employee preferences, knowledge updation, professional development

Procedia PDF Downloads 22
21984 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents

Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta

Abstract:

One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.

Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar

Procedia PDF Downloads 135
21983 The Application of ICT in E-Assessment and E-Learning in Language Learning and Teaching

Authors: Seyyed Hassan Seyyedrezaei

Abstract:

The advent of computer and ICT thereafter has introduced many irrevocable changes in learning and teaching. There is substantially growing need for the use of IT and ICT in language learning and teaching. In other words, the integration of Information Technology (IT) into online teaching is of vital importance for education and assessment. Considering the fact that the image of education is undergone drastic changes by the advent of technology, education systems and teachers move beyond the walls of traditional classes and methods in order to join with other educational centers to revitalize education. Given the advent of distance learning, online courses and virtual universities, e-assessment has taken a prominent place in effective teaching and meeting the learners' educational needs. The purpose of this paper is twofold: first, scrutinizing e-learning, it discusses how and why e-assessment is becoming widely used by educationalists and administrators worldwide. As a second purpose, a couple of effective strategies for online assessment will be enumerated.

Keywords: e-assessment, e learning, ICT, online assessment

Procedia PDF Downloads 568
21982 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)

Procedia PDF Downloads 108
21981 Students’ Perceptions of Using Wiki Technology to Enhance Language Learning

Authors: Hani Mustafa, Cristina Gonzalez Ruiz, Estelle Bech

Abstract:

The growing influence of digital technologies has made learning and interaction more accessible, resulting in effective collaboration if properly managed. Technology enabled learning has become an important conduit for learning, including collaborative learning. The use of wiki technology, for example, has opened a new learning platform that enables the integration of social, linguistic, and cognitive processes of language learning. It encourages students to collaborate in the construction, analysis, and understanding of knowledge. But to what extent is the use of wikis effective in promoting collaborative learning among students. In addition, how do students perceive this technology in enhancing their language learning? In this study, students were be given a wiki project to complete collaboratively with their group members. Students had to write collaboratively to produce and present a seven-day travel plan in which they had to describe places to visit and things to do to explore the best historical and cultural aspects of the country. The study involves students learning French, Malay, and Spanish as a foreign language. In completing this wiki project, students will move from passive learning of language to real engagement with classmates, requiring them to collaborate and negotiate effectively with one another. The objective of the study is to ascertain to what extent does wiki technology helped in promoting collaborative learning and improving language skills from students’ perception. It is found that while there was improvement in students language skills, the overall experience was less positive due to unfamiliarity with a new learning tool.

Keywords: collaborative learning, foreign language, wiki, teaching

Procedia PDF Downloads 136
21980 E-Learning in Primary Science: Teachers versus Students

Authors: Winnie Wing Mui So, Yu Chen

Abstract:

This study investigated primary school teachers’ and students’ perceptions of science learning in an e-learning environment. This study used a multiple case study design and involved eight science teachers and their students from four Hong Kong primary schools. The science topics taught included ‘season and weather’ ‘force and movement’, ‘solar and lunar eclipse’ and ‘living things and habitats’. Data were collected through lesson observations, interviews with teachers, and interviews with students. Results revealed some differences between the teachers’ and the students’ perceptions regarding the usefulness of e-learning resources, the organization of student-centred activities, and the impact on engagement and interactions in lessons. The findings have implications for the more effective creation of e-learning environments for science teaching and learning in primary schools.

Keywords: e-learning, science education, teacher' and students' perceptions, primary schools

Procedia PDF Downloads 202
21979 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
21978 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.

Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor

Procedia PDF Downloads 439