Search results for: crack detection
2761 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection
Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi
Abstract:
There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA
Procedia PDF Downloads 3712760 The Effect of Technology on Advanced Automotive Electronics
Authors: Abanob Nady Wasef Moawed
Abstract:
In more complicated systems, inclusive of automotive gearboxes, a rigorous remedy of the data is essential because there are several transferring elements (gears, bearings, shafts, and many others.), and in this way, there are numerous viable sources of mistakes and also noise. The fundamental goal of these elements are the detection of damage in car gearbox. The detection strategies used are the wavelet technique, the bispectrum, advanced filtering techniques (selective filtering) of vibrational alerts and mathematical morphology. Gearbox vibration assessments were achieved (gearboxes in proper circumstance and with defects) of a manufacturing line of a huge car assembler. The vibration indicators have acquired the use of five accelerometers in distinct positions of the sample. The effects acquired using the kurtosis, bispectrum, wavelet and mathematical morphology confirmed that it's far possible to identify the lifestyles of defects in automobile gearboxes.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioningautomotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 292759 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics
Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari
Abstract:
In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.Keywords: finite element modeling, continuum damage mechanics, indentation, cracks
Procedia PDF Downloads 4212758 A New Method for Fault Detection
Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed
Abstract:
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.Keywords: Byzantine faults, distributed systems, fault detection, network protocols, node-disjoint paths
Procedia PDF Downloads 4482757 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 2322756 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 1422755 Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.Keywords: fatigue, debonding, Paris law, APDL, adhesive
Procedia PDF Downloads 3632754 Numerical and Experimental Analysis of Rotor Dynamic Stability
Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, A. Bouderba, H. Kebir
Abstract:
The study of the rotor dynamic in transient system allowed to determine the vibratory responses due to various excitations. This work presents a coupled gyroscopic effect in the defects of a rotor under dynamic loading. Calculations of different energies and virtual work from the various elements of the rotor are developed. To treat real systems a model of finite element was developed. This model of the rotor makes it possible to extract the frequencies and modal deformed, and to calculate the stresses in the critical zone. The study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances, crack and various excitations.Keywords: rotor, defect, finite element, numerical
Procedia PDF Downloads 4602753 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm
Authors: Shafqat Ullah Khan, Ammar Nasir
Abstract:
Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays
Procedia PDF Downloads 802752 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1392751 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 3492750 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables
Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei
Abstract:
A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor
Procedia PDF Downloads 2252749 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification
Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado
Abstract:
DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles
Procedia PDF Downloads 2452748 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 182747 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 962746 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 1292745 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids
Authors: Hiroshi Nakayama, Yuji Ito
Abstract:
Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid
Procedia PDF Downloads 3552744 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection
Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu
Abstract:
Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection
Procedia PDF Downloads 3702743 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network
Procedia PDF Downloads 2762742 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 632741 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 2902740 Identification of Babesia ovis Through Polymerase Chain Reaction in Sheep and Goat in District Muzaffargarh, Pakistan
Authors: Muhammad SAFDAR, Mehmet Ozaslan, Musarrat Abbas Khan
Abstract:
Babesiosis is a haemoparasitic disease due to the multiplication of protozoan’s parasite, Babesia ovis in the red blood cells of the host, and contributes numerous economical losses, including sheep and goat ruminants. The early identification and successful treatment of Babesia Ovis spp. belong to the key steps of control and health management of livestock resources. The objective of this study was to construct a polymerase chain reaction (PCR) based method for the detection of Babesia spp. in small ruminants and to determine the risk factors involved in the spreading of babesiosis infections. A total of 100 blood samples were collected from 50 sheep and 50 goats along with different areas of Muzaffargarh, Pakistan, from randomly selected herds. Data on the characteristics of sheep and goats were collected through questionnaires. Of 100 blood samples examined, 18 were positive for Babesia ovis upon microscopic studies, whereas 11 were positive for the presence of Babesia spp. by PCR assay. For the recognition of parasitic DNA, a set of 500bp oligonucleotide was designed by PCR amplification with sequence 18S rRNA gene for B. ovis. The prevalence of babesiosis in small ruminant’s sheep and goat detected by PCR was significantly higher in female animals (28%) than male herds (08%). PCR analysis of the reference samples showed that the detection limit of the PCR assay was 0.01%. Taken together, all data indicated that this PCR assay was a simple, fast, specific detection method for Babesia ovis species in small ruminants compared to other available methods.Keywords: Babesia ovis, PCR amplification, 18S rRNA, sheep and goat
Procedia PDF Downloads 1262739 Development of Web-Based Iceberg Detection Using Deep Learning
Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith
Abstract:
Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution
Procedia PDF Downloads 912738 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing
Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj
Abstract:
This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano
Procedia PDF Downloads 582737 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 1582736 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 5352735 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6252734 Analysis of Control by Flattening of the Welded Tubes
Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche
Abstract:
In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001
Procedia PDF Downloads 4462733 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin
Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu
Abstract:
The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials
Procedia PDF Downloads 1882732 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition
Authors: Antonella Cartoni, Mattea Carmen Castrovilli
Abstract:
A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme
Procedia PDF Downloads 65