Search results for: back propagation algorithm
4577 Use of Personal Rhythm to Authenticate Encrypted Messages
Authors: Carlos Gonzalez
Abstract:
When communicating using private and secure keys, there is always the doubt as to the identity of the message creator. We introduce an algorithm that uses the personal typing rhythm (keystroke dynamics) of the message originator to increase the trust of the authenticity of the message originator by the message recipient. The methodology proposes the use of a Rhythm Certificate Authority (RCA) to validate rhythm information. An illustrative example of the communication between Bob and Alice and the RCA is included. An algorithm of how to communicate with the RCA is presented. This RCA can be an independent authority or an enhanced Certificate Authority like the one used in public key infrastructure (PKI).Keywords: authentication, digital signature, keystroke dynamics, personal rhythm, public-key encryption
Procedia PDF Downloads 3044576 Tuning of Kalman Filter Using Genetic Algorithm
Authors: Hesham Abdin, Mohamed Zakaria, Talaat Abd-Elmonaem, Alaa El-Din Sayed Hafez
Abstract:
Kalman filter algorithm is an estimator known as the workhorse of estimation. It has an important application in missile guidance, especially in lack of accurate data of the target due to noise or uncertainty. In this paper, a Kalman filter is used as a tracking filter in a simulated target-interceptor scenario with noise. It estimates the position, velocity, and acceleration of the target in the presence of noise. These estimations are needed for both proportional navigation and differential geometry guidance laws. A Kalman filter has a good performance at low noise, but a large noise causes considerable errors leads to performance degradation. Therefore, a new technique is required to overcome this defect using tuning factors to tune a Kalman filter to adapt increasing of noise. The values of the tuning factors are between 0.8 and 1.2, they have a specific value for the first half of range and a different value for the second half. they are multiplied by the estimated values. These factors have its optimum values and are altered with the change of the target heading. A genetic algorithm updates these selections to increase the maximum effective range which was previously reduced by noise. The results show that the selected factors have other benefits such as decreasing the minimum effective range that was increased earlier due to noise. In addition to, the selected factors decrease the miss distance for all ranges of this direction of the target, and expand the effective range which leads to increase probability of kill.Keywords: proportional navigation, differential geometry, Kalman filter, genetic algorithm
Procedia PDF Downloads 5104575 Trade and Environmental Policy Strategies
Authors: Olakunle Felix Adekunle
Abstract:
In the recent years several non-tariff provisions have been regarded as means holding back transboundary environmental damages. Affected countries have then increasingly come up with trade policies to compensate for or to In recent years, several non‐tariff trade provisions have been regarded as means of holding back transboundary environmental damages. Affected countries have then increasingly come up with trade policies to compensate for or to enforce the adoption of environmental policies elsewhere. These non‐tariff trade constraints are claimed to threaten the freedom of trading across nations, as well as the harmonization sought towards the distribution of income and policy measures. Therefore the ‘greening’ of world trade issues essentially ranges over whether there ought or ought not to be a trade‐off between trade and environmental policies. The impacts of free trade and environmental policies on major economic variables (such as trade flows, balances of trade, resource allocation, output, consumption and welfare) are thus studied here, and so is the EKC hypothesis, when such variables are played against the resulting emission levels. The policy response is seen as a political game, played here by two representative parties named North and South. Whether their policy choices, simulated by four scenarios, are right or wrong depends on their policy goals, split into economic and environmental ones.Keywords: environmental, policies, strategies, constraint
Procedia PDF Downloads 3334574 An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph
Authors: Karunambigai Mevani Govindasamy, Sathishkumar Ayyappan
Abstract:
In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG.Keywords: fractional edge domination number, intuitionistic fuzzy cycle, intuitionistic fuzzy graph, intuitionistic fuzzy path
Procedia PDF Downloads 1744573 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 2314572 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 4534571 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 4354570 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: chromosomes, cropping, genetic algorithm, genes
Procedia PDF Downloads 4274569 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning
Procedia PDF Downloads 1314568 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akin, Ibrahim Aydogdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame
Procedia PDF Downloads 5454567 Analysis of Fault Tolerance on Grid Computing in Real Time Approach
Authors: Parampal Kaur, Deepak Aggarwal
Abstract:
In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.Keywords: computational grid, fault tolerance, task replication, job scheduling
Procedia PDF Downloads 4364566 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks
Authors: Rei-Heng Cheng, Wen-Pinn Fang
Abstract:
A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks
Procedia PDF Downloads 3914565 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4214564 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction
Authors: N. Boutaghane, F. Z. Tounsi
Abstract:
Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT
Procedia PDF Downloads 4534563 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce
Authors: Jiao Sun, Li Pan, Shijun Liu
Abstract:
Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.Keywords: collaborative filtering, recommendation, data normalization, mapreduce
Procedia PDF Downloads 2174562 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 6124561 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4254560 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 1634559 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems
Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan
Abstract:
This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.Keywords: PID, robot, sliding mode control, uncertainties
Procedia PDF Downloads 5084558 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation
Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque
Abstract:
During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.Keywords: auxetics, metamaterials, structural dynamics, vibration isolation
Procedia PDF Downloads 1494557 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1624556 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 1504555 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm
Authors: Roya Ahmadi Ahangar, Hamid Madadyari
Abstract:
The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.Keywords: load-frequency control, multi zone, robust PID controller, wind generation
Procedia PDF Downloads 3034554 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations
Procedia PDF Downloads 1754553 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data
Authors: Devin Simmons
Abstract:
At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.Keywords: ferry vessels, transportation, modeling, AIS data
Procedia PDF Downloads 1764552 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document
Procedia PDF Downloads 1594551 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations
Procedia PDF Downloads 4314550 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP
Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh
Abstract:
This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration
Procedia PDF Downloads 2564549 A Protein-Wave Alignment Tool for Frequency Related Homologies Identification in Polypeptide Sequences
Authors: Victor Prevost, Solene Landerneau, Michel Duhamel, Joel Sternheimer, Olivier Gallet, Pedro Ferrandiz, Marwa Mokni
Abstract:
The search for homologous proteins is one of the ongoing challenges in biology and bioinformatics. Traditionally, a pair of proteins is thought to be homologous when they originate from the same ancestral protein. In such a case, their sequences share similarities, and advanced scientific research effort is spent to investigate this question. On this basis, we propose the Protein-Wave Alignment Tool (”P-WAT”) developed within the framework of the France Relance 2030 plan. Our work takes into consideration the mass-related wave aspect of protein biosynthesis, by associating specific frequencies to each amino acid according to its mass. Amino acids are then regrouped within their mass category. This way, our algorithm produces specific alignments in addition to those obtained with a common amino acid coding system. For this purpose, we develop the ”P-WAT” original algorithm, able to address large protein databases, with different attributes such as species, protein names, etc. that allow us to align user’s requests with a set of specific protein sequences. The primary intent of this algorithm is to achieve efficient alignments, in this specific conceptual frame, by minimizing execution costs and information loss. Our algorithm identifies sequence similarities by searching for matches of sub-sequences of different sizes, referred to as primers. Our algorithm relies on Boolean operations upon a dot plot matrix to identify primer amino acids common to both proteins which are likely to be part of a significant alignment of peptides. From those primers, dynamic programming-like traceback operations generate alignments and alignment scores based on an adjusted PAM250 matrix.Keywords: protein, alignment, homologous, Genodic
Procedia PDF Downloads 1134548 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 111