Search results for: atomic Fe clusters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1275

Search results for: atomic Fe clusters

165 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 694
164 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 190
163 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 37
162 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 263
161 Factors Predicting Symptom Cluster Functional Status and Quality of Life of Chronic Obstructive Pulmonary Disease Patients

Authors: D. Supaporn, B. Julaluk

Abstract:

The purposes of this study were to study symptom cluster, functional status and quality of life of patients with chronic obstructive pulmonary disease (COPD), and to examine factors related to and predicting symptom cluster, functional status and quality of life of COPD patients. The sample was 180 COPD patients multi-stage random sampling from 4 hospitals in the eastern region, Thailand. The research instruments were 8 questionnaires and recorded forms measuring personal and illness data, co-morbidity, physical and psychological symptom, health status perception, social support, and regimen adherence, functional status and quality of life. Spearman rank and Pearson correlation coefficient, exploratory factors analysis and standard multiple regression were used to analyzed data. The findings revealed that two symptom clusters were generated: physical symptom cluster including dyspnea, fatigue and insomnia; and, psychological symptom cluster including anxiety and depression. Scores of physical symptom cluster was at moderate level while that of psychological symptom cluster was at low level. Scores on functional status, social support and overall regimen adherence were at good level whereas scores on quality of life and health status perception were at moderate level. Disease severity was positively related to physical symptom cluster, psychological symptom cluster and quality of life, and was negatively related to functional status at a moderate level (rs = .512, .509, .588 and -.611, respectively). Co-morbidity was positively related to physical symptom cluster and psychological symptom cluster at a low level (r = .179 and .176, respectively). Regimen adherence was negatively related to quality of life and psychological symptom cluster at a low level (r=-.277 and -.309, respectively), and was positively related to functional status at a moderate level (r=.331). Health status perception was negatively related to physical symptom cluster, psychological symptom cluster and quality of life at a moderate to high level (r = -.567, -.640 and -.721, respectively) and was positively related to functional status at a high level (r = .732). Social support was positively related to functional status (r=.235) and was negatively related to quality of life at a low level (r=-.178). Physical symptom cluster was negatively related to functional status (r= -.490) and was positively related to quality of life at a moderate level (r=.566). Psychological symptom cluster was negatively related to functional status and was positively related to quality of life at a moderate level (r= -.566 and .559, respectively). Disease severity, co-morbidity and health status perception could predict 40.2% of the variance of physical symptom cluster. Disease severity, co-morbidity, regimen adherence and health status perception could predict 49.8% of the variance of psychological symptom cluster. Co-morbidity, regimen adherence and health status perception could predict 65.0% of the variance of functional status. Disease severity, health status perception and physical symptom cluster could predict 60.0% of the variance of quality of life in COPD patients. The results of this study can be used for enhancing quality of life of COPD patients.

Keywords: chronic obstructive pulmonary disease, functional status, quality of life, symptom cluster

Procedia PDF Downloads 527
160 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 130
159 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field

Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso

Abstract:

Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.

Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate

Procedia PDF Downloads 236
158 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis

Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias

Abstract:

Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.

Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification

Procedia PDF Downloads 336
157 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 105
156 Investigating Student Behavior in Adopting Online Formative Assessment Feedback

Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons

Abstract:

In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.

Keywords: formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control

Procedia PDF Downloads 368
155 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 401
154 Modelling the Antecedents of Supply Chain Enablers in Online Groceries Using Interpretive Structural Modelling and MICMAC Analysis

Authors: Rose Antony, Vivekanand B. Khanapuri, Karuna Jain

Abstract:

Online groceries have transformed the way the supply chains are managed. These are facing numerous challenges in terms of product wastages, low margins, long breakeven to achieve and low market penetration to mention a few. The e-grocery chains need to overcome these challenges in order to survive the competition. The purpose of this paper is to carry out a structural analysis of the enablers in e-grocery chains by applying Interpretive Structural Modeling (ISM) and MICMAC analysis in the Indian context. The research design is descriptive-explanatory in nature. The enablers have been identified from the literature and through semi-structured interviews conducted among the managers having relevant experience in e-grocery supply chains. The experts have been contacted through professional/social networks by adopting a purposive snowball sampling technique. The interviews have been transcribed, and manual coding is carried using open and axial coding method. The key enablers are categorized into themes, and the contextual relationship between these and the performance measures is sought from the Industry veterans. Using ISM, the hierarchical model of the enablers is developed and MICMAC analysis identifies the driver and dependence powers. Based on the driver-dependence power the enablers are categorized into four clusters namely independent, autonomous, dependent and linkage. The analysis found that information technology (IT) and manpower training acts as key enablers towards reducing the lead time and enhancing the online service quality. Many of the enablers fall under the linkage cluster viz., frequent software updating, branding, the number of delivery boys, order processing, benchmarking, product freshness and customized applications for different stakeholders, depicting these as critical in online food/grocery supply chains. Considering the perishability nature of the product being handled, the impact of the enablers on the product quality is also identified. Hence, study aids as a tool to identify and prioritize the vital enablers in the e-grocery supply chain. The work is perhaps unique, which identifies the complex relationships among the supply chain enablers in fresh food for e-groceries and linking them to the performance measures. It contributes to the knowledge of supply chain management in general and e-retailing in particular. The approach focus on the fresh food supply chains in the Indian context and hence will be applicable in developing economies context, where supply chains are evolving.

Keywords: interpretive structural modelling (ISM), India, online grocery, retail operations, supply chain management

Procedia PDF Downloads 183
153 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 83
152 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 54
151 Capacity Building in Dietary Monitoring and Public Health Nutrition in the Eastern Mediterranean Region

Authors: Marisol Warthon-Medina, Jenny Plumb, Ayoub Aljawaldeh, Mark Roe, Ailsa Welch, Maria Glibetic, Paul M. Finglas

Abstract:

Similar to Western Countries, the Eastern Mediterranean Region (EMR) also presents major public health issues associated with the increased consumption of sugar, fat, and salt. Therefore, one of the policies of the World Health Organization’s (WHO) EMR is to reduce the intake of salt, sugar, and fat (Saturated fatty acids, trans fatty acids) to address the risk of non-communicable diseases (i.e. diabetes, cardiovascular disease, cancer) and obesity. The project objective is to assess status and provide training and capacity development in the use of improved standardized methodologies for updated food composition data, dietary intake methods, use of suitable biomarkers of nutritional value and determine health outcomes in low and middle-income countries (LMIC). Training exchanges have been developed with clusters of countries created resulting from regional needs including Sudan, Egypt and Jordan; Tunisia, Morocco, and Mauritania; and other Middle Eastern countries. This capacity building will lead to the development and sustainability of up-to-date national and regional food composition databases in LMIC for use in dietary monitoring assessment in food and nutrient intakes. Workshops were organized to provide training and capacity development in the use of improved standardized methodologies for food composition and food intake. Training needs identified and short-term scientific missions organized for LMIC researchers including (1) training and knowledge exchange workshops, (2) short-term exchange of researchers, (3) development and application of protocols and (4) development of strategies to reduce sugar and fat intake. An initial training workshop, Morocco 2018 was attended by 25 participants from 10 EMR countries to review status and support development of regional food composition. 4 training exchanges are in progress. The use of improved standardized methodologies for food composition and dietary intake will produce robust measurements that will reinforce dietary monitoring and policy in LMIC. The capacity building from this project will lead to the development and sustainability of up-to-date national and regional food composition databases in EMR countries. Supported by the UK Medical Research Council, Global Challenges Research Fund, (MR/R019576/1), and the World Health Organization’s Eastern Mediterranean Region.

Keywords: dietary intake, food composition, low and middle-income countries, status.

Procedia PDF Downloads 130
150 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties

Authors: Luminita Marin, Dalila Belei, Carmen Dumea

Abstract:

Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.

Keywords: aggregation induced emission, pyridine-N-oxide, triazole

Procedia PDF Downloads 432
149 High Performance Computing Enhancement of Agent-Based Economic Models

Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna

Abstract:

This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).

Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process

Procedia PDF Downloads 106
148 Groundwater Quality Assessment in the Vicinity of Tannery Industries in Warangal, India

Authors: Mohammed Fathima Shahanaaz, Shaik Fayazuddin, M. Uday Kiran

Abstract:

Groundwater quality is deteriorating day by day in different parts of the world due to various reasons, toxic chemicals are being discharged without proper treatment into inland water bodies and land which in turn add pollutants to the groundwater. In this kind of situation, the rural communities which do not have municipal drinking water have to rely on groundwater though it is polluted for various uses. Tannery industry is one of the major industry which provides economy and employment to India. Since most of the developed countries stopped using chemicals which are toxic, the tanning industry which uses chromium as its major element are being shifted towards developing countries. Most of the tanning industries in India can be found in clusters concentrated mainly in states of Tamilnadu, West Bengal, Uttar Pradesh and limited places of Punjab. Limited work is present in the case of tanneries of Warangal. There exists 18 group of tanneries in Desaipet, Enamamula region of Warangal, out of which 4 are involved in dry process and are low responsible for groundwater pollution. These units of tanneries are discharging their effluents after treatment into Sai Cheruvu. Though the treatment effluents are being discharged, the Sai Cheruvu is turned in to Pink colour, with higher levels of BOD, COD, chromium, chlorides, total hardness, TDS and sulphates. An attempt was made to analyse the groundwater samples around this polluted Sai Cheruvu region since literature shows that a single tannery can pollute groundwater to a radius of 7-8 kms from the point of disposal. Sample are collected from 6 different locations around Sai Cheruvu. Analysis was performed for determining various constituents in groundwater such as pH, EC, TDS, TH, Ca+2, Mg+2, HCO3-, Na+, K+, Cl-, SO42-, NO3-, F and Cr+6. The analysis of these constitutes gave values greater than permissible limits. Even chromium is also present in groundwater samples which is exceeding permissible limits People in Paidepally and Sardharpeta villages already stopped the usage of groundwater. They are buying bottle water for drinking purpose. Though they are not using groundwater for drinking purpose complaints are made about using this water for washing also. So treatment process should be adopted for groundwater which should be simple and efficient. In this study rice husk silica (RHS) is used to treat pollutants in groundwater with varying dosages of RHS and contact time. Rice husk is treated, dried and place in a muffle furnace for 6 hours at 650°C. Reduction is observed in total hardness, chlorides and chromium levels are observed after the application RHS. Pollutants reached permissible limits for 27.5mg/l and 50 mg/l of dosage for a contact time of 130 min at constant pH and temperature.

Keywords: chromium, groundwater, rice husk silica, tanning industries

Procedia PDF Downloads 178
147 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines

Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk

Abstract:

Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.

Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper

Procedia PDF Downloads 150
146 Collateral Impact of Water Resources Development in an Arsenic Affected Village of Patna District

Authors: Asrarul H. Jeelani

Abstract:

Arsenic contamination of groundwater and its’ health implications in lower Gangetic plain of Indian states started reporting in the 1980s. The same period was declared as the first water decade (1981-1990) to achieve ‘water for all.’ To fulfill the aim, the Indian government, with the support of international agencies installed millions of hand-pumps through water resources development programs. The hand-pumps improve the accessibility if the groundwater, but over-extraction of it increases the chances of mixing of trivalent arsenic which is more toxic than pentavalent arsenic of dug well water in Gangetic plain and has different physical manifestations. Now after three decades, Bihar (middle Gangetic plain) is also facing arsenic contamination of groundwater and its’ health implications. Objective: This interdisciplinary research attempts to understand the health and social implications of arsenicosis among different castes in Haldi Chhapra village and to find the association of ramifications with water resources development. Methodology: The Study used concurrent quantitative dominant mix method (QUAN+qual). The researcher had employed household survey, social mapping, interviews, and participatory interactions. However, the researcher used secondary data for retrospective analysis of hand-pumps and implications of arsenicosis. Findings: The study found 88.5% (115) household have hand-pumps as a source of water however 13.8% uses purified supplied water bottle and 3.6% uses combinations of hand-pump, bottled water and dug well water for drinking purposes. Among the population, 3.65% of individuals have arsenicosis, and 2.72% of children between the age group of 5 to 15 years are affected. The caste variable has also emerged through quantitative as well as geophysical locations analysis as 5.44% of arsenicosis manifested individual belong to scheduled caste (SC), 3.89% to extremely backward caste (EBC), 2.57% to backward caste (BC) and 3% to other. Among three clusters of arsenic poisoned locations, two belong to SC and EBC. The village as arsenic affected is being discriminated, whereas the affected individual is also facing discrimination, isolation, stigma, and problem in getting married. The forceful intervention to install hand-pumps in the first water decades and later restructuring of the dug well destroyed a conventional method of dug well cleaning. Conclusion: The common manifestation of arsenicosis has increased by 1.3% within six years of span in the village. This raised the need for setting up a proper surveillance system in the village. It is imperative to consider the social structure for arsenic mitigation program as this research reveals caste as a significant factor. The health and social implications found in the study; retrospectively analyzed as the collateral impact of water resource development programs in the village.

Keywords: arsenicosis, caste, collateral impact, water resources

Procedia PDF Downloads 80
145 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 226
144 A Study of a Diachronic Relationship between Two Weak Inflection Classes in Norwegian, with Emphasis on Unexpected Productivity

Authors: Emilija Tribocka

Abstract:

This contribution presents parts of an ongoing study of a diachronic relationship between two weak verb classes in Norwegian, the a-class (cf. the paradigm of ‘throw’: kasta – kastar – kasta – kasta) and the e-class (cf. the paradigm of ‘buy’: kjøpa – kjøper – kjøpte – kjøpt). The study investigates inflection class shifts between the two classes with Old Norse, the ancestor of Modern Norwegian, as a starting point. Examination of inflection in 38 verbs in four chosen dialect areas (106 places of attestations) demonstrates that the shifts from the a-class to the e-class are widespread to varying degrees in three out of four investigated areas and are more common than the shifts in the opposite direction. The diachronic productivity of the e-class is unexpected for several reasons. There is general agreement that type frequency is an important factor influencing productivity. The a-class (53% of all weak verbs) was more type frequent in Old Norse than the e-class (42% of all weak verbs). Thus, given the type frequency, the expansion of the e-class is unexpected. Furthermore, in the ‘core’ areas of expanded e-class inflection, the shifts disregard phonological principles creating forms with uncomfortable consonant clusters, e.g., fiskte instead of fiska, the preterit of fiska ‘fish’. Later on, these forms may be contracted, i.e., fiskte > fiste. In this contribution, two factors influencing the shifts are presented: phonological form and token frequency. Verbs with the stem ending in a consonant cluster, particularly when the cluster ends in -t, hardly ever shift to the e-class. As a matter of fact, verbs with this structure belonging to the e-class in Old Norse shift to the a-class in Modern Norwegian, e.g., ON e-class verb skipta ‘change’ shifts to the a-class. This shift occurs as a result of the lack of morpho-phonological transparency between the stem and the preterit suffix of the e-class, -te. As there is a phonological fusion between the stem ending in -t and the suffix beginning in -t, the transparent a-class inflection is chosen. Token frequency plays an important role in the shifts, too, in some dialects. In one of the investigated areas, the most token frequent verbs of the ON e-class remain in the e-class (e.g., høyra ‘hear’, leva ‘live’, kjøpa ‘buy’), while less frequent verbs may shift to the a-class. Furthermore, the results indicate that the shift from the a-class to the e-class occurs in some of the most token frequent verbs of the ON a-class in this area, e.g., lika ‘like’, lova ‘promise’, svara ‘answer’. The latter is unexpected as frequent items tend to remain stable. This study presents a case of unexpected productivity, demonstrating that minor patterns can grow and outdo major patterns. Thus, type frequency is not the only factor that determines productivity. The study addresses the role of phonological form and token frequency in the spread of inflection patterns.

Keywords: inflection class, productivity, token frequency, phonological form

Procedia PDF Downloads 36
143 Phytoremediation; Pb, Cr and Cd Accumulation in Fruits and Leaves of Vitis Vinifera L. From Air Pollutions and Intraction between Their Uptake Based on the Distance from the Main Road

Authors: Fatemeh Mohsennezhad

Abstract:

Air pollution is one of major problems for environment. Providing healthy food and protecting water sources from pollution has been one of the concerns of human societies and decision-making centers so that protecting food from pollution, detecting sources of pollution and measuring them become important. Nutritive and political significance of grape in this area, extensive use of leaf and fruit of this plant and development of urban areas around grape gardens and construction of Tabriz – Miandoab road, which is the most important link between East and West Azarbaijan, led us to examine the impact of this road construction and urban environment pollutants such as lead chromium and cadmium on the quality of this valuable crop. First, the samples were taken from different adjacent places and medium distances from the road, each place being located exactly by Google earth and GPS. Digestion was done through burning dry material and hydrochloric acid and their ashes were analyzed by atomic absorption to determine (Pb, Cr, Cd) accumulations. In this experiments effects of 2 following factors were examined as a variable: Garden distance from the main road with levels 1: For 50 meters, 2: For 120-200 meters, 3: For above 800 meters, and plant organ with levels 1: For fruit, 2: For leaves. At the end, the results were processed by SPSS software. 3.54 ppm, the most lead quantity, was at sample No. 54 in fruits with 800 meters distance from the road and 1.00 ppm was the least lead quantity at sample No. 50 in fruits with 1000 meters from the road. In leaves, the most lead quantity was 19.16 ppm at sample No. 15 with 50 meters distance from the road and the least quantity was 1.41 ppm at sample No. 31 with 50 meters from the road. Pb uptake is significantly different at 50 meters and 200 meters distance. It means that Pb uptake near the main road is the highest. But this result is not true for others elements. Distance has not a meaningful effect on Cr uptake. The result of analysis of variation in distance and plant organ for Cd showed that between fruit and leaf, Cd uptake is significantly different. But distance and interaction between distance and plant organ is not meaningful. There is neither meaningful interaction between these elements uptakes in fruits nor in leaves. If leaves and fruits, assumed all together, showed a very meaningful integration between heavy metal accumulations. It means that each of these elements causes uptake others without considering special organs. In the tested area, it became clear that, from the accumulation of heavy metals perspective, there is no meaningful difference in existing distance between road and garden. There is a meaningful difference among heavy metals accumulation. In other words, increase ratio of one metal to another was different from the resulted differences shown in corresponding graphs. Interaction among elements and distance between garden and road was not meaningful.

Keywords: Vitis vinifera L., phytoremediation, heavy metals accumulation, lead, chromium, cadmium

Procedia PDF Downloads 329
142 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 172
141 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 161
140 The Role of Community Beliefs and Practices on the Spread of Ebola in Uganda, September 2022

Authors: Helen Nelly Naiga, Jane Frances Zalwango, Saudah N. Kizito, Brian Agaba, Brenda N Simbwa, Maria Goretti Zalwango, Richard Migisha, Benon Kwesiga, Daniel Kadobera, Alex Ario Riolexus, Sarah Paige, Julie R. Harris

Abstract:

Background: Traditional community beliefs and practices can facilitate the spread of Ebola virus during outbreaks. On September 20, 2022, Uganda declared a Sudan Virus Disease (SVD) outbreak after a case was confirmed in Mubende District. During September–November 2022, the outbreak spread to eight additional districts. We investigated the role of community beliefs and practices in the spread of SUDV in Uganda in 2022. Methods: A qualitative study was conducted in Mubende, Kassanda, and Kyegegwa districts in February 2023. We conducted nine focus group discussions (FGDs) and six key informant interviews (KIIs). FGDs included SVD survivors, household members of SVD patients, traditional healers, religious leaders, and community leaders. Key informants included community, political, and religious leaders, traditional healers, and health workers. We asked about community beliefs and practices to understand if and how they contributed to the spread of SUDV. Interviews were recorded, translated, transcribed, and analyzed thematically. Results: Frequently-reported themes included beliefs that the community deaths, later found to be due to SVD, were the result of witchcraft or poisoning. Key informants reported that SVD patients frequently first consulted traditional healers or spiritual leaders before seeking formal healthcare, and noted that traditional healers treated patients with signs and symptoms of SVD without protective measures. Additional themes included religious leaders conducting laying-on-of-hands prayers for SVD patients and symptomatic contacts, SVD patients and their symptomatic contacts hiding in friends’ homes, and exhumation of SVD patients originally buried in safe and dignified burials, to enable traditional burials. Conclusion: Multiple community beliefs and practices likely promoted SVD outbreak spread during the 2022 outbreak in Uganda. Engaging traditional and spiritual healers early during similar outbreaks through risk communication and community engagement efforts could facilitate outbreak control. Targeted community messaging, including clear biological explanations for clusters of deaths and information on the dangers of exhuming bodies of SVD patients, could similarly facilitate improved control in future outbreaks in Uganda.

Keywords: Ebola, Sudan virus, outbreak, beliefs, traditional

Procedia PDF Downloads 37
139 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 383
138 Social Problems and Gender Wage Gap Faced by Working Women in Readymade Garment Sector of Pakistan

Authors: Narjis Kahtoon

Abstract:

The issue of the wage discrimination on the basis of gender and social problem has been a significant research problem for several decades. Whereas lots of have explored reasons for the persistence of an inequality in the wages of male and female, none has successfully explained away the entire differentiation. The wage discrimination on the basis of gender and social problem of working women is a global issue. Although inequality in political and economic and social make-up of countries all over the world, the gender wage discrimination, and social constraint is present. The aim of the research is to examine the gender wage discrimination and social constraint from an international perspective and to determine whether any pattern exists among cultural dimensions of a country and the man and women remuneration gap in Readymade Garment Sector of Pakistan. Population growth rate is significant indicator used to explain the change in population and play a crucial point in the economic development of a country. In Pakistan, readymade garment sector consists of small, medium and large sized firms. With an estimated 30 percent of the workforce in textile- Garment is females’. Readymade garment industry is a labor intensive industry and relies on the skills of individual workers and provides highest value addition in the textile sector. In the Garment sector, female workers are concentrated in poorly paid, labor-intensive down-stream production (readymade garments, linen, towels, etc.), while male workers dominate capital- intensive (ginning, spinning and weaving) processes. Gender wage discrimination and social constraint are reality in Pakistan Labor Market. This research allows us not only to properly detect the size of gender wage discrimination and social constraint but to also fully understand its consequences in readymade garment sector of Pakistan. Furthermore, research will evaluated this measure for the three main clusters like Lahore, Karachi, and Faisalabad. These data contain complete details of male and female workers and supervisors in the readymade garment sector of Pakistan. These sources of information provide a unique opportunity to reanalyze the previous finding in the literature. The regression analysis focused on the standard 'Mincerian' earning equation and estimates it separately by gender, the research will also imply the cultural dimensions developed by Hofstede (2001) to profile a country’s cultural status and compare those cultural dimensions to the wage inequalities. Readymade garment of Pakistan is one of the important sectors since its products have huge demand at home and abroad. These researches will a major influence on the measures undertaken to design a public policy regarding wage discrimination and social constraint in readymade garment sector of Pakistan.

Keywords: gender wage differentials, decomposition, garment, cultural

Procedia PDF Downloads 182
137 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa

Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu

Abstract:

After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.

Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration

Procedia PDF Downloads 43
136 Controlled Drug Delivery System for Delivery of Poor Water Soluble Drugs

Authors: Raj Kumar, Prem Felix Siril

Abstract:

The poor aqueous solubility of many pharmaceutical drugs and potential drug candidates is a big challenge in drug development. Nanoformulation of such candidates is one of the major solutions for the delivery of such drugs. We initially developed the evaporation assisted solvent-antisolvent interaction (EASAI) method. EASAI method is use full to prepared nanoparticles of poor water soluble drugs with spherical morphology and particles size below 100 nm. However, to further improve the effect formulation to reduce number of dose and side effect it is important to control the delivery of drugs. However, many drug delivery systems are available. Among the many nano-drug carrier systems, solid lipid nanoparticles (SLNs) have many advantages over the others such as high biocompatibility, stability, non-toxicity and ability to achieve controlled release of drugs and drug targeting. SLNs can be administered through all existing routes due to high biocompatibility of lipids. SLNs are usually composed of lipid, surfactant and drug were encapsulated in lipid matrix. A number of non-steroidal anti-inflammatory drugs (NSAIDs) have poor bioavailability resulting from their poor aqueous solubility. In the present work, SLNs loaded with NSAIDs such as Nabumetone (NBT), Ketoprofen (KP) and Ibuprofen (IBP) were successfully prepared using different lipids and surfactants. We studied and optimized experimental parameters using a number of lipids, surfactants and NSAIDs. The effect of different experimental parameters such as lipid to surfactant ratio, volume of water, temperature, drug concentration and sonication time on the particles size of SLNs during the preparation using hot-melt sonication was studied. It was found that particles size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. SLNs prepared at optimized condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). We successfully prepared the SLN of below 220 nm using different lipids and surfactants combination. The drugs KP, NBT and IBP showed 74%, 69% and 53% percentage of entrapment efficiency with drug loading of 2%, 7% and 6% respectively in SLNs of Campul GMS 50K and Gelucire 50/13. In-vitro drug release profile of drug loaded SLNs is shown that nearly 100% of drug was release in 6 h.

Keywords: nanoparticles, delivery, solid lipid nanoparticles, hot-melt sonication, poor water soluble drugs, solubility, bioavailability

Procedia PDF Downloads 290