Search results for: artificial life
8252 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3278251 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought
Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan
Abstract:
Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin
Procedia PDF Downloads 638250 From the Fields to the Concrete: Urban Development of Campo Mourão
Authors: Caio Fialho
Abstract:
The automobile incentive policy in Brazil since the 1950s creates several problems in its cities, more visible in large centers such as São Paulo or Rio de Janeiro, but also strongly present in smaller cities, resulting in an increase in social and spatial inequality, together with a drop in the quality of life. The analyzed city, Campo Mourão, reflects these policies, a city that initially planned to be compact and walkable took other directions and currently suffers from urban mobility and social inequality in this urban environment, despite being a medium-sized city in Brazil. The research aims to understand and diagnose how these policies shaped the city and what are the results in Brazilian's inland cities. Based on historical, bibliographical, and field research in the city, the result is a diagnosis of the problem faced and how it can be reversed in search of social equality and better quality of life.Keywords: urban mobility, quality of life, social equality, substantiable
Procedia PDF Downloads 1858249 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 388248 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing
Authors: Aldona Kluczek
Abstract:
In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment
Procedia PDF Downloads 2478247 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation
Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla
Abstract:
Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol
Procedia PDF Downloads 3438246 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2258245 Determining the Effect of Tdcs in Pain and Quality of Life in Patients with Fibromyalgia
Authors: Farid Rezaei, Zahra Reza Soltani, Behrouz Tavana, Afsaneh Dadarkhah, Masoume Bahrami Asl, S. Alireza Mirghasemi
Abstract:
Introduction: Fibromyalgia is a syndrome comprised of a group of symptoms. The primary symptom of fibromyalgia is pain propagation is associated by Secondary symptoms include fatigue, cognitive disorders, sleep disorders and hypersensitivity to painful stimuli. Recent studies have shown that there is a direct relationship between fibromyalgia and certain changes in brain activity. Aim: The aim of this study is determining the effect of tDCS in pain and quality of life in patients with fibromyalgia. Method: 68 patients with fibromyalgia who had inclusion criterias were randomly divided into two groups of case and control. Groups were matched in terms of gender, age, education, duration of pain and PMS. Patient groups treated with tDCS device manufacture by Enraf company made in Netherlands (M1 anodal stimulation, 2 mA constant current, 20 minutes, for 10 sessions (3 days a week)). Also the protocol was done for control group, in sham mode of tDCS device that had no current, for 10 sessions of 20 minutes. Before treatment, immediately after the end of 10 sessions treatment (short-term) and 10 week later (long-term effect), pain intensity questionnaires (VAS) and quality of life in fibromyalgia patients questionnaire was completed by the patient. Results: Pain intensity were significantly lower in the treatment group than the sham group 2 weeks and 10 weeks after treatment than before treatment (P < 0.001). Although the quality of life of patients 2 weeks after treatment showed no significant change, but ten weeks after treatment were more than sham group (P < 0.0001). Conclusion: Our results suggest that tDCS is a safe and effective in treating fibromyalgia patients and an important effect in reducing pain and increasing quality of their life.Keywords: fibromyalgia, tDCS, quality of life, VAS score
Procedia PDF Downloads 3438244 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada
Authors: Monica Anumula
Abstract:
Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort
Procedia PDF Downloads 1798243 The Effect of Psychosomatic Aspects of Endometriosis on Marital Relationships and Quality of Life: A Review Study
Authors: Farzaneh Askari, Jila Ganji, Sedigheh Hasani Moghadam
Abstract:
Background and Aim: Endometriosis has been reported as one of the most common chronic gynecological conditions characterized by physical and psychological complications. Given that the impact of this disease on marital relationships and quality of life is multidimensional, the present review study aimed to reflect on the effect of psychosomatic aspects of endometriosis on marital relationships and quality of life. Materials and Methods: A narrative review methodology using keywords determined by the Medical Subject Headings (MeSH) thesaurus was adopted in this study. For this purpose, the databases of ScienceDirect, Scientific Information Database (SID), Google Scholar, and PubMed were searched by means of key terms including endometriosis, marital relationships, physical complications, psychological complications, and quality of life in English and Persian from 2005 to 2020. At the end of the search, 38 articles were retrieved, and ultimately a total number of 16 studies were recruited for this review. Results: A review of the selected articles demonstrated that endometriosis could affect marital relationships and quality of life among couples featuring in three different categories, i.e. “category I: physical health dimension” (chronic pelvic pain, dysmenorrhea, cramps but not period, reduction and loss of fertility), “category II: sexual health dimension” (no sexual intercourse, dyspareunia, lack of sexual satisfaction), and “category III: psychosocial health dimension” (negative self-esteem, low energy, sense of loneliness, depression, social isolation, insufficient sleep, marital distress, divorce and marriage breakdown, inability to work and socialize). Conclusion: In general, it is suggested to pay particular attention to psychosomatic aspects of marital problems in patients affected with endometriosis. Accordingly, implementing educational and counseling strategies to minimize the complications of this disease can provide the grounds for improving marital relationships and maintaining the quality of life in these patients.Keywords: Endometriosis, marital relationships, psychosomatic complications, quality of life
Procedia PDF Downloads 1268242 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 2728241 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1658240 Informing Lighting Designs Through a Comprehensive Review of Light Pollution Impacts
Authors: Stephen M. Simmons, Stuart W. Baur, William L. Gillis
Abstract:
In recent years, increasing concern has been shown towards the issue of light pollution, especially with the spread of brighter, more blue-rich LED bulbs. Much research has been conducted in order to study the effects of artificial light at night, and many adverse impacts have been discovered, such as circadian disruption, degradation of the night sky, and interference oftheprocesses and behaviors of plants and animals. Despite a plethora of informationin the literature regarding the numerous illeffects of this type of pollution, there does not appear to be a complete summary of these impacts, including their magnitudes, which would facilitate the balancing of risks and benefits in the design of an exterior lighting system. This paperprovides a comprehensive review of the known impacts of light pollution, divided into four categories - human health, night sky, plants, and animals; additionally, it includes a synopsis of what likely remains unknown at this point in time. This review will attempt to showcase the relative significance of differentimpacts within each category, as well as their sensitivity to changes in lighting specifications (brightness, color temperature, shielding, and mounting height). Methods to be employed in this research include an extensive literature review and the gathering of expert knowledge and opinions. The findings of this review will be used to inform the creation of an optimized lighting design for the Missouri University of Science and Technology campus. It is hoped that future research willexplore the known impacts of light pollution further, as well as search for what still remains to be found regarding the consequencesof artificial light at night.Keywords: comprehensive review, impacts, light pollution, lighting design, literature review
Procedia PDF Downloads 1388239 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1508238 Reconsidering the Legitimacy of Capital Punishment in the Interpretation of the Human Right to Life in the Two Traditional Approaches
Authors: Yujie Zhang
Abstract:
There are debates around the legitimacy of capital punishment, i.e., whether death could serve as a proper execution in our legal system or not. Different arguments have been raised. However, none of them seem able to provide a determined answer to the issue; this results in a lack of instruction in the legal practice. This article, therefore, devotes itself to the effort to find such an answer. It takes the perspective of rights, through interpreting the concept of right to life, which capital punishment appears to be in confliction with in the two traditional approaches, to reveal a possibly best account of the right and its conclusion on capital punishment. However, this effort is not a normative one which focuses on what ought to be. It means the article does not try to work out which argument we should choose and solve the hot debate on whether capital punishment should be allowed or not. It, again, does not propose which perspective we should take to approach this issue or generally which account of right must be better; rather, it is more a thought experiment. It attempts to raise a new perspective to approach the issue of the legitimacy of capital punishment. Both its perspective and conclusion therefore are tentative: what if we view this issue in a way we have never tried before, for example the different accounts of right to life? In this sense, the perspective could be defied, while the conclusion could be rejected. Other perspectives and conclusions are also possible. Notwithstanding, this tentative perspective and account of the right still could not be denied from serving as a potential approach, since it does have the ability to provide us with a determined attitude toward capital punishment that is hard to achieve through existing arguments.Keywords: capital punishment, right to life, theories of rights, the choice theory
Procedia PDF Downloads 1968237 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 1168236 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System
Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma
Abstract:
Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.Keywords: machine learning, wearable devices, user interface, user experience, internet of things
Procedia PDF Downloads 2948235 The Effect of Micro-Order in Family on Divorce: A Case Study on Married Offspring of the Martyr in the City of Mashhad, Iran
Authors: Maryam Eskafi
Abstract:
Purpose: Frequent referrals of the martyr offspring to The Martyr Foundation and studying divorce documents revealed the depth of family quarrels among the martyr families. For this reason, conducting the research of this type can be effective. Method: Research method is survey. Statistical population is the total of married offspring of the martyr living in Mashhad City of Iran. Data were gathered by using questionnaire administered with a sample of 250 selected by using cluster sampling method. Results: Family order may lead to the ground actions for divorce through life satisfaction. Conclusion: life satisfaction with -0.62 beta value has a strong negative effect on the ground actions for divorce.Keywords: ground actions for divorce, life satisfaction, family order, satisfaction
Procedia PDF Downloads 3098234 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device
Authors: Jisoo Kim, Min Su Lee, Sunmook Lee
Abstract:
Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test
Procedia PDF Downloads 4038233 Revolutionizing Higher Education: AI-Powered Gamification for Enhanced Learning
Authors: Gina L. Solano
Abstract:
This project endeavors to enhance learning experiences for undergraduate pre-service teachers and graduate K-12 educators by leveraging artificial intelligence (AI). Firstly, the initiative delves into integrating AI within undergraduate education courses, fostering traditional literacy skills essential for academic success and extending their applicability beyond the classroom. Education students will explore AI tools to design literacy-focused activities aligned with their curriculum. Secondly, the project investigates the utilization of AI to craft instructional materials employing gamification strategies (e.g., digital and classic games, badges, quests) to amplify student engagement and motivation in mastering course content. Lastly, it aims to create a professional repertoire that can be applied by pre-service and current teachers in P-12 classrooms, promoting seamless integration for those already in teaching positions. The project's impact extends to benefiting college students, including pre-service and graduate teachers, as they enhance literacy and digital skills through AI. It also benefits current P-12 educators who can integrate AI into their classrooms, fostering innovative teaching practices. Moreover, the project contributes to faculty development, allowing them to cultivate low-risk and engaging classroom environments, ultimately enriching the learning journey. The insights gained from this project can be shared within and beyond the discipline to advance the broader field of study.Keywords: artificial intelligence, gamification, learning experiences, literacy skills, engagement
Procedia PDF Downloads 658232 Tussle of Intellectual Property Rights and Privacy Laws with Reference to Artificial Intelligence
Authors: Lipsa Dash, Gyanendra Sahu
Abstract:
Intelligence is the cornerstone of humans, and now they have created a counterpart of themselves artificially. Our understanding of the word intelligence is a very perspective based and mostly superior understanding of what we read, write, perceive and understand the adversities around better. A wide range of industrial sectors have also started involving the technology to perceive, reason and act. Similarly, intellectual property is the product of human intelligence and creativity. The World Intellectual Property Organisation is currently working on technology trends across the globe, and AI tops the list in the digital frontier that will have a profound impact on the world, transforming the way we live and work. Coming to Intellectual Property, patents and creations of the AI’s itself have constantly been in question. This paper explores whether AI’s can fit in the flexibilities of Trade Related Intellectual Property Studies and gaps in the existing IP laws or rthere is a need of amendment to include them in the ambit. The researcher also explores the right of AI’s who create things out of their intelligence and whether they could qualify to be legal persons making the other laws applicable on them. Differentiation between AI creations and human creations are explored in the paper, and the need of amendments to determine authorship, ownership, inventorship, protection, and identification of beneficiary for remuneration or even for determining liability. The humans and humanoids are all indulged in matters related to Privacy, and that attracts another constitutional legal issue to be addressed. The authors will be focusing on the legal conundrums of AI, transhumanism, and the Internet of things.Keywords: artificial intelligence, humanoids, healthcare, privacy, legal conundrums, transhumanism
Procedia PDF Downloads 1268231 The Determination of Heavy Metal in Herb Used in Dusit Community to Develop a Sustainable Quality of Life
Authors: Chinnawat Satsananan
Abstract:
This research aimed to find amount of heavy metal in herb used in Dusit community and compare of heavy metal in each part by quantity in herb and standard determination in Thai herb books to develop a sustainable quality of life, the result of study in 14 herbs do not find sample of heavy metal., by quantity of heavy contamination of 4 kinds: Cd, Co, Fe and Pb have lower than standard of 2 organizations: Thai herb standard, and World Health Organization, from the test 14 herbs have Fe in every part of herbs and all 14 kinds has Fe that is necessary for our health.Keywords: herbs plants, heavy metal, Dusit district, sustainable quality of life
Procedia PDF Downloads 3738230 How Pandemic Changed the Protective Aids for People in Day to Day Life
Authors: Jinali Chaklasiya
Abstract:
The importance of face masks, gloves, sanitizer, face shield Were only Applied for Doctor Amenities, and because of the outbreak of coronavirus, everybody has to wear Personal Protective Equipment (PPE) for health measures. . The main focus of this research paper is in the area of how doctor amenities changed the importance of gloves, face masks, sanitizer, face shield in day to day life of people. For this research, we have collected data from a quantitative survey. A questionnaire survey was conducted to note down the user point of view in doctor amenities and why is it important. The result of the questionnaire survey has helped to design parameters which were used to ideate new protective products. Thus, it is concluded to keep in mind that these protective devices can be used in day-to-day life by people across the globe. In the coming future, the protective device can make a difference and protect us from other common viruses.Keywords: equpiment, coronavirus, products, protective, environment
Procedia PDF Downloads 2038229 The Effectivity of Lime Juice on the Cooked Rice's Shelf-Life
Authors: Novriyanti Lubis, Riska Prasetiawati, Nuriani Rahayu
Abstract:
The effectivity of lime juice on the cooked rice’s shelf-life was investigated. This research was proposed to get the optimal condition, such as concentration lime juice as the preservatives, and shelf-life cooked rice’s container to store using rice warmer. The effectivity was analysed total colony bacteriology, and physically. The variation of lime juice’s concentration that have been used were 0%, 0,46%, 0,93%, 1,40%, and 1,87%. The observation of cooked rice’s quality was done every 12 hours, including colour, smell, flavour, and total colony every 24 hours. Based on the result of the research considered from the cooked rice’s quality through observing the total of the colony bacteriology and physically, it showed the optimum concentrate which is effective preserve the cooked rise’s level concentrate was 0.93%.Keywords: bacteriology, cooked rice's, lime juice, preservative
Procedia PDF Downloads 3368228 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety
Procedia PDF Downloads 1108227 Genetic Differentiation between Members of a Species Complex (Retropinna spp.)
Authors: Md. Rakeb-Ul Islam, Daniel J. Schmidt, Jane M. Hughes
Abstract:
Population connectivity plays an important role in the conservation and recovery of declining species. It affects genetic diversity, adaptive potential and resilience of species in nature. Loss of genetic variation can affect populations by limiting their ability to persist in stressful environmental conditions. Generally, freshwater fishes show higher levels of genetic structuring and subdivision among populations than those inhabiting estuarine or marine environments due to the presence of artificial (e.g. dams) and natural (e.g. mountain ranges) barriers to dispersal in freshwater ecosystems. The Australian smelt (Retropinnidae: Retropinna spp.) is a common freshwater fish species which is widely distributed throughout coastal and inland drainages in South - eastern Australia. These fish are found in a number of habitats from headwaters to lowland sites. They form large shoals in the mid to upper water column and inhabit deep slow – flowing pools as well as shallow fast flowing riffle-runs. Previously, Australian smelt consisted of two described taxa (Retropinna semoni and Retropinna tasmanica), but recently a complex of five or more species has been recognized based on an analysis of allozyme variation. In many area, they spend their entire life cycle within freshwater. Although most populations of the species are thought to be non-diadromous, it is still unclear whether individuals within coastal populations of Australian Retropinna exhibit diadromous migrations or whether fish collected from marine/estuarine environments are vagrants that have strayed out of the freshwater reaches. In this current study, the population structure and genetic differentiation of Australian smelt fish were investigated among eight rivers of South-East Queensland (SEQ), Australia. 11 microsatellite loci were used to examine genetic variation within and among populations. Genetic diversity was very high. Number of alleles ranged from three to twenty. Expected heterozygosity averaged across loci ranged from 0.572 to 0.852. There was a high degree of genetic differentiation among rivers (FST = 0.23), although low levels of genetic differentiation among populations within rivers. These extremely high levels of genetic differentiation suggest that the all smelt in SEQ complete their life history within freshwater, or, if they go to the estuary, they do not migrate to sea. This hypothesis is being tested further with a micro-chemical analysis of their otoliths.Keywords: diadromous, genetic diversity, microsatellite, otolith
Procedia PDF Downloads 3068226 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 1578225 Beyond Taguchi’s Concept of the Quality Loss Function
Authors: Atul Dev, Pankaj Jha
Abstract:
Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality.Keywords: existing concept, goal post philosophy, life cycle, proposed concept, quality loss function
Procedia PDF Downloads 3158224 Enabling Affirmative Futures: Making Use of Virtual Spaces and New Social Technologies in Co-Production Research with Marginalised Young People
Authors: Kirsty Liddiard
Abstract:
In this paper, we detail the politics and practicalities of co-produced disability research with disabled young people with life-limiting and life-threatening impairments in our ESRC funded project, Life, Death, Disability and the Human: Living Life to the Fullest. We centre our Co-Researcher Collective of disabled young people who, through virtual research methods and social technologies, are co-leading this innovative project exploring the lives, hopes, desires and ambitions of young disabled people living short(er) lives. Co-production is an established approach; however, our co-researchers have led us to develop inclusive and transformative research practices that engage with online social research methods in innovative ways. Through this discussion, we demarcate the Academy and ‘research process’ as potentially deeply ableist spaces that propogate the normative researcher as non-disabled; someone integrated into the Academy and insecure employment; and who enacts normative modes of leadership. We use our experiences of co-production in Living Life to the Fullest, then, to show that research – as a discipline, a set of politics, and scholarly practice – must be transformed in order to enable new inclusive research futures that support meaningful co-production with marginalised young people. In conclusion, as we detail our experiences, we aim to encourage disability studies researchers and others to adopt virtual environments and social technologies when researching with and for the lives of disabled people.Keywords: co-production, illness, youth, technology
Procedia PDF Downloads 1578223 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 278