Search results for: anomalous noise
128 Iterative Reconstruction Techniques as a Dose Reduction Tool in Pediatric Computed Tomography Imaging: A Phantom Study
Authors: Ajit Brindhaban
Abstract:
Background and Purpose: Computed Tomography (CT) scans have become the largest source of radiation in radiological imaging. The purpose of this study was to compare the quality of pediatric Computed Tomography (CT) images reconstructed using Filtered Back Projection (FBP) with images reconstructed using different strengths of Iterative Reconstruction (IR) technique, and to perform a feasibility study to assess the use of IR techniques as a dose reduction tool. Materials and Methods: An anthropomorphic phantom representing a 5-year old child was scanned, in two stages, using a Siemens Somatom CT unit. In stage one, scans of the head, chest and abdomen were performed using standard protocols recommended by the scanner manufacturer. Images were reconstructed using FBP and 5 different strengths of IR. Contrast-to-Noise Ratios (CNR) were calculated from average CT number and its standard deviation measured in regions of interest created in the lungs, bone, and soft tissues regions of the phantom. Paired t-test and the one-way ANOVA were used to compare the CNR from FBP images with IR images, at p = 0.05 level. The lowest strength value of IR that produced the highest CNR was identified. In the second stage, scans of the head was performed with decreased mA(s) values relative to the increase in CNR compared to the standard FBP protocol. CNR values were compared in this stage using Paired t-test at p = 0.05 level. Results: Images reconstructed using IR technique had higher CNR values (p < 0.01.) in all regions compared to the FBP images, at all strengths of IR. The CNR increased with increasing IR strength of up to 3, in the head and chest images. Increases beyond this strength were insignificant. In abdomen images, CNR continued to increase up to strength 5. The results also indicated that, IR techniques improve CNR by a up to factor of 1.5. Based on the CNR values at strength 3 of IR images and CNR values of FBP images, a reduction in mA(s) of about 20% was identified. The images of the head acquired at 20% reduced mA(s) and reconstructed using IR at strength 3, had similar CNR as FBP images at standard mA(s). In the head scans of the phantom used in this study, it was demonstrated that similar CNR can be achieved even when the mA(s) is reduced by about 20% if IR technique with strength of 3 is used for reconstruction. Conclusions: The IR technique produced better image quality at all strengths of IR in comparison to FBP. IR technique can provide approximately 20% dose reduction in pediatric head CT while maintaining the same image quality as FBP technique.Keywords: filtered back projection, image quality, iterative reconstruction, pediatric computed tomography imaging
Procedia PDF Downloads 148127 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image
Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias
Abstract:
Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals
Procedia PDF Downloads 73126 Factors Determining the Vulnerability to Occupational Health Risk and Safety of Call Center Agents in the Philippines
Authors: Lito M. Amit, Venecio U. Ultra, Young-Woong Song
Abstract:
The business process outsourcing (BPO) in the Philippines is expanding rapidly attracting more than 2% of total employment. Currently, the BPO industry is confronted with several issues pertaining to sustainable productivity such as meeting the staffing gap, high rate of employees’ turnover and workforce retention, and the occupational health and safety (OHS) of call center agents. We conducted a survey of OHS programs and health concerns among call center agents in the Philippines and determined the sociocultural factors that affect the vulnerability of call center agents to occupational health risks and hazards. The majority of the agents affirmed that OHS are implemented and OHS orientation and emergency procedures were conducted at employment initiations, perceived favorable and convenient working environment except for occasional noise disturbances and acoustic shock, visual, and voice fatigues. Male agents can easily adjust to the demands and changes in their work environment and flexible work schedules than female agents. Female agents have a higher tendency to be pressured and humiliated by low work performance, experience a higher incidence of emotional abuse, psychological abuse, and experience more physical stress than male agents. The majority of the call center agents had a night-shift schedule and regardless of other factors, night shift work brings higher stress to agents. While working in a call center, higher incidence of headaches and insomnia, burnout, suppressed anger, anxiety, and depressions were experienced by female, younger (21-25 years old) and those at night shift than their counterpart. Most common musculoskeletal disorders include body pain in the neck, shoulders and back; and hand and wrist disorders and these are commonly experienced by female and younger workers. About 30% experienced symptoms of cardiovascular and gastrointestinal disorders and weakened immune systems. Overall, these findings have shown the variable vulnerability by a different subpopulation of call center agents and are important in the occupational health risk prevention and management towards a sustainable human resource for BPO industry in the Philippines.Keywords: business process outsourcing industry, health risk of call center agents, socio-cultural determinants, Philippines
Procedia PDF Downloads 494125 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 270124 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests
Authors: Md. Kausar Alam, Ramin Motamed
Abstract:
The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction
Procedia PDF Downloads 97123 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 84122 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms
Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson
Abstract:
This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection
Procedia PDF Downloads 464121 Impact of Urban Densification on Travel Behaviour: Case of Surat and Udaipur, India
Authors: Darshini Mahadevia, Kanika Gounder, Saumya Lathia
Abstract:
Cities, an outcome of natural growth and migration, are ever-expanding due to urban sprawl. In the Global South, urban areas are experiencing a switch from public transport to private vehicles, coupled with intensified urban agglomeration, leading to frequent longer commutes by automobiles. This increase in travel distance and motorized vehicle kilometres lead to unsustainable cities. To achieve the nationally pledged GHG emission mitigation goal, the government is prioritizing a modal shift to low-carbon transport modes like mass transit and paratransit. Mixed land-use and urban densification are crucial for the economic viability of these projects. Informed by desktop assessment of mobility plans and in-person primary surveys, the paper explores the challenges around urban densification and travel patterns in two Indian cities of contrasting nature- Surat, a metropolitan industrial city with a 5.9 million population and a very compact urban form, and Udaipur, a heritage city attracting large international tourists’ footfall, with limited scope for further densification. Dense, mixed-use urban areas often improve access to basic services and economic opportunities by reducing distances and enabling people who don't own personal vehicles to reach them on foot/ cycle. But residents travelling on different modes end up contributing to similar trip lengths, highlighting the non-uniform distribution of land-uses and lack of planned transport infrastructure in the city and the urban-peri urban networks. Additionally, it is imperative to manage these densities to reduce negative externalities like congestion, air/noise pollution, lack of public spaces, loss of livelihood, etc. The study presents a comparison of the relationship between transport systems with the built form in both cities. The paper concludes with recommendations for managing densities in urban areas along with promoting low-carbon transport choices like improved non-motorized transport and public transport infrastructure and minimizing personal vehicle usage in the Global South.Keywords: India, low-carbon transport, travel behaviour, trip length, urban densification
Procedia PDF Downloads 216120 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback
Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu
Abstract:
With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.Keywords: input performance, mobile device, slim keyboard, tactile feedback
Procedia PDF Downloads 299119 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving
Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco
Abstract:
Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.Keywords: augmented reality, driving, physiological signals, test platform
Procedia PDF Downloads 141118 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring
Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon
Abstract:
We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch
Procedia PDF Downloads 185117 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 104116 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging
Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati
Abstract:
Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization
Procedia PDF Downloads 74115 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques
Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang
Abstract:
Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE
Procedia PDF Downloads 530114 Conflict around the Brownfield Reconversion of the Canadian Forces Base Rockcliffe in Ottawa: A Clash of Ambitions and Visions in Canadian Urban Sustainability
Authors: Kenza Benali
Abstract:
Over the past decade, a number of remarkable projects in urban brownfield reconversion emerged across Canada, including the reconversion of former military bases owned by the Canada Lands Company (CLC) into sustainable communities. However, unlike other developments, the regeneration project of the former Canadian Forces Base Rockcliffe in Ottawa – which was announced as one of the most ambitious Smart growth projects in Canada – faced serious obstacles in terms of social acceptance by the local community, particularly urban minorities composed of Francophones, Indigenous and vulnerable groups who live near or on the Base. This turn of events led to the project being postponed and even reconsidered. Through an analysis of its press coverage, this research aims to understand the causes of this urban conflict which lasted for nearly ten years. The findings reveal that the conflict is not limited to the “standard” issues common to most conflicts related to urban mega-projects in the world – e.g., proximity issues (threads to the quality of the surrounding neighbourhoods; noise, traffic, pollution, New-build gentrification) often associated with NIMBY phenomena. In this case, the local actors questioned the purpose of the project (for whom and for what types of uses is it conceived?), its local implementation (to what extent are the local history and existing environment taken into account?), and the degree of implication of the local population in the decision-making process (with whom is the project built?). Moreover, the interests of the local actors have “jumped scales” and transcend the micro-territorial level of their daily life to take on a national and even international dimension. They defined an alternative view of how this project, considered strategic by his location in the nation’s capital, should be a reference as well as an international showcase of Canadian ambition and achievement in terms of urban sustainability. This vision promoted, actually, a territorial and national identity approach - in which some cultural values are highly significant (respect of social justice, inclusivity, ethnical diversity, cultural heritage, etc.)- as a counterweight to planners’ vision which is criticized as a normative/ universalist logic that ignore the territorial peculiarities.Keywords: smart growth, brownfield reconversion, sustainable neighborhoods, Canada Lands Company, Canadian Forces Base Rockcliffe, urban conflicts
Procedia PDF Downloads 382113 The Study of Intangible Assets at Various Firm States
Authors: Gulnara Galeeva, Yulia Kasperskaya
Abstract:
The study deals with the relevant problem related to the formation of the efficient investment portfolio of an enterprise. The structure of the investment portfolio is connected to the degree of influence of intangible assets on the enterprise’s income. This determines the importance of research on the content of intangible assets. However, intangible assets studies do not take into consideration how the enterprise state can affect the content and the importance of intangible assets for the enterprise`s income. This affects accurateness of the calculations. In order to study this problem, the research was divided into several stages. In the first stage, intangible assets were classified based on their synergies as the underlying intangibles and the additional intangibles. In the second stage, this classification was applied. It showed that the lifecycle model and the theory of abrupt development of the enterprise, that are taken into account while designing investment projects, constitute limit cases of a more general theory of bifurcations. The research identified that the qualitative content of intangible assets significant depends on how close the enterprise is to being in crisis. In the third stage, the author developed and applied the Wide Pairwise Comparison Matrix method. This allowed to establish that using the ratio of the standard deviation to the mean value of the elements of the vector of priority of intangible assets makes it possible to estimate the probability of a full-blown crisis of the enterprise. The author has identified a criterion, which allows making fundamental decisions on investment feasibility. The study also developed an additional rapid method of assessing the enterprise overall status based on using the questionnaire survey with its Director. The questionnaire consists only of two questions. The research specifically focused on the fundamental role of stochastic resonance in the emergence of bifurcation (crisis) in the economic development of the enterprise. The synergetic approach made it possible to describe the mechanism of the crisis start in details and also to identify a range of universal ways of overcoming the crisis. It was outlined that the structure of intangible assets transforms into a more organized state with the strengthened synchronization of all processes as a result of the impact of the sporadic (white) noise. Obtained results offer managers and business owners a simple and an affordable method of investment portfolio optimization, which takes into account how close the enterprise is to a state of a full-blown crisis.Keywords: analytic hierarchy process, bifurcation, investment portfolio, intangible assets, wide matrix
Procedia PDF Downloads 208112 Environmental Related Mortality Rates through Artificial Intelligence Tools
Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas
Abstract:
The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.Keywords: air quality, artificial inteligence, climatic conditions, mortality
Procedia PDF Downloads 113111 Ecological Crisis: A Buddhist Approach
Authors: Jaharlal Debbarma
Abstract:
The ecological crisis has become a threat to earth’s well-being. Man’s ambitious desire of wealth, pleasure, fame, longevity and happiness has extracted natural resources so vastly that it is unable to sustain a healthy life. Man’s greed for wealth and power has caused the setting up of vast factories which further created the problem of air, water and noise pollution, which have adversely affected both fauna and flora.It is no secret that man uses his inherent powers of reason, intelligence and creativity to change his environment for his advantage. But man is not aware that the moral force he himself creates brings about corresponding changes in his environment to his weal or woe whether he likes it or not. As we are facing the global warming and the nature’s gift such as air and water has been so drastically polluted with disastrous consequences that man seek for a ways and means to overcome all this pollution problem as his health and life sustainability has been threaten and that is where man try to question about the moral ethics and value.It is where Buddhist philosophy has been emphasized deeply which gives us hope for overcoming this entire problem as Buddha himself emphasized in eradicating human suffering and Buddhism is the strongest form of humanism we have. It helps us to learn to live with responsibility, compassion, and loving kindness.It teaches us to be mindful in our action and thought as the environment unites every human being. If we fail to save it we will perish. If we can rise to meet the need to all which ecology binds us - humans, other species, other everything will survive together.My paper will look into the theory of Dependent Origination (Pratītyasamutpāda), Buddhist understanding of suffering (collective suffering), and Non-violence (Ahimsa) and an effort will be made to provide a new vision to Buddhist ecological perspective. The above Buddhist philosophy will be applied to ethical values and belief systems of modern society. The challenge will be substantially to transform the modern individualistic and consumeristic values. The stress will be made on the interconnectedness of the nature and the relation between human and planetary sustainability. In a way environmental crisis will be referred to “spiritual crisis” as A. Gore (1992) has pointed out. The paper will also give important to global consciousness, as well as to self-actualization and self-fulfillment. In the words of Melvin McLeod “Only when we combine environmentalism with spiritual practice, will we find the tools to make the profound personal transformations needed to address the planetary crisis?”Keywords: dependent arising, collective ecological suffering, remediation, Buddhist approach
Procedia PDF Downloads 266110 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units
Authors: Meltem Kürtüncü, Işın Alkan
Abstract:
Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.Keywords: lullaby, mother voice, relaxation, stress
Procedia PDF Downloads 230109 Influence of High-Resolution Satellites Attitude Parameters on Image Quality
Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy
Abstract:
One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF
Procedia PDF Downloads 402108 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 105107 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 11106 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities
Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra
Abstract:
Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics
Procedia PDF Downloads 143105 Management in the Transport of Pigs to Slaughterhouses in the Valle De Aburrá, Antioquia
Authors: Natalia Uribe Corrales, María Fernanda Benavides Erazo, Santiago Henao Villegas
Abstract:
Introduction: Transport is a crucial link in the porcine chain because it is considered a stressful event in the animal, due to it is a new environment, which generates new interactions, together with factors such as speed, noise, temperature changes, vibrations, deprivation of food and water. Therefore, inadequate handling at this stage can lead to bruises, musculoskeletal injuries, fatigue, and mortality, resulting in canal seizures and economic losses. Objective: To characterize the transport and driving practices for the mobilization of standing pigs directed to slaughter plants in the Valle de Aburrá, Antioquia, Colombia in 2017. Methods: A descriptive cross-sectional study was carried out with the transporters arriving at the slaughterhouses approved by National Institute for Food and Medicine Surveillance (INVIMA) during 2017 in the Valle de Aburrá. The process of obtaining the samples was made from probabilistic sampling. Variables such as journey time, mechanical technical certificate, training in animal welfare, driving speed, material, and condition of floors and separators, supervision of animals during the trip, load density and mortality were analyzed. It was approved by the ethics committee for the use and care of animals CICUA of CES University, Act number 14 of 2015. Results: 190 trucks were analyzed, finding that 12.4% did not have updated mechanical technical certificate; the transporters experience in pig’s transportation was an average of 9.4 years (d.e.7.5). The 85.8% reported not having received training in animal welfare. Other results were that the average speed was 63.04km/hr (d.e 13.46) and the 62% had floors in good condition; nevertheless, the 48% had bad conditions on separators. On the other hand, the 88% did not supervise their animals during the journey, although the 62.2% had an adequate loading density, in relation to the average mortality was 0.2 deaths/travel (d.e. 0.5). Conclusions: Trainers should be encouraged on issues such as proper maintenance of vehicles, animal welfare, obligatory review of animals during mobilization and speed of driving, as these poorly managed indicators generate stress in animals, increasing generation of injuries as well as possible accidents; also, it is necessary to continue to improve aspects such as aluminum floors and separators that favor easy cleaning and maintenance, as well as the appropriate handling in the density of load that generates animal welfare.Keywords: animal welfare, driving practices, pigs, truck infrastructure
Procedia PDF Downloads 208104 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills
Authors: Inkeri Jaaskelainen
Abstract:
The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being
Procedia PDF Downloads 133103 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 155102 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry
Authors: Bjorn Kierulf, Arun Chundru
Abstract:
Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.Keywords: additive manufacturing, machining, pitot tube, sounding rocketry
Procedia PDF Downloads 164101 Personal Exposure to Respirable Particles and Other Selected Gases among Cyclists near and Away from Busy Roads of Perth Metropolitan Area
Authors: Anu Shrestha, Krassi Rumchev, Ben Mullins, Yun Zhao, Linda Selvey
Abstract:
Cycling is often promoted as a means of reducing vehicular congestion, noise and greenhouse gas and air pollutant emissions in urban areas. It is also indorsed as a healthy means of transportation in terms of reducing the risk of developing a range of physical and psychological conditions. However, people who cycle regularly may not be aware that they can become exposed to high levels of Vehicular Air Pollutants (VAP) emitted by nearby traffics and therefore experience adverse health effects as a result. The study will highlight the present scenario of ambient air pollution level in different cycling routes in Perth and also highlight significant contribution to the understanding of health risks that cyclist may face from exposure to particulate air pollution. Methodology: This research was conducted in Perth, Western Austral and consisted of two groups of cyclists cycling near high (2 routes) and low (two routes) vehicular traffic roads, at high and low levels of exertion, during the cold and warm seasons. A sample size of 123 regular cyclists who cycled at least 80 km/week, aged 20-55, and non-smoker were selected for this study. There were altogether 100 male and 23 female who were asked to choose one or more routes among four different routes, and each participant cycled the route for warm or cold or both seasons. Cyclist who reported cardiovascular and other chronic health conditions (excluding asthma) were not invited into the study. Exposures to selected air pollutants were assessed by undertaking background and personal measurements alone with the measurement of heart and breathe rate of each participant. Finding: According to the preliminary study findings, the cyclists who used cycling route close to high traffic route were exposed to higher levels of measured air pollutants Nitrogen Oxide (NO₂) =0.12 ppm, sulfur dioxide (SO₂)=0.06 ppm and carbon monoxide (CO)=0.25 PPM compared to those who cycled away from busy roads. However, we measured high concentrations of particulate air pollution near one of the low traffic route which we associate with the close proximity to ferry station. Concluding Statement: As a conclusion, we recommend that cycling routes should be selected away from high traffic routes. If possible, we should also consider that if the cycling route is surrounded by the dense populated infrastructures, it can trap the pollutants and always facilitate in increasing inhalation of particle count among the cyclists.Keywords: air pollution, carbon monoxide, cyclists' health, nitrogen dioxide, nitrogen oxide, respirable particulate matters
Procedia PDF Downloads 263100 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 10599 Restoring Ecosystem Balance in Arid Regions: A Case Study of a Royal Nature Reserve in the Kingdom of Saudi Arabia
Authors: Talal Alharigi, Kawther Alshlash, Mariska Weijerman
Abstract:
The government of Saudi Arabia has developed an ambitious “Vision 2030”, which includes a Green Initiative (i.e., the planting of 10 billion trees) and the establishment of seven Royal Reserves as protected areas that comprise 13% of the total land area. The main objective of the reserves is to restore ecosystem balance and reconnect people with nature. Two royal reserves are managed by The Imam Abdulaziz bin Mohammed Royal Reserve Development Authority, including Imam Abdulaziz bin Mohammed Royal Reserve and King Khalid Royal Reserve. The authority has developed a management plan to enhance the habitat through seed dispersal and the planting of 10 million trees, and to restock wildlife that was once abundant in these arid ecosystems (e.g., oryx, Nubian ibex, gazelles, red-necked ostrich). Expectations are that with the restoration of the native vegetation, soil condition and natural hydrologic processes will improve and lead to further enhancement of vegetation and, over time, an increase in biodiversity of flora and fauna. To evaluate the management strategies in reaching these expectations, a comprehensive monitoring and evaluation program was developed. The main objectives of this program are to (1) monitor the status and trends of indicator species, (2) improve desert ecosystem understanding, (3) assess the effects of human activities, and (4) provide science-based management recommendations. Using a random stratified survey design, a diverse suite of survey methods will be implemented, including belt and quadrant transects, camera traps, GPS tracking devices, and drones. Data will be gathered on biotic parameters (plant and animal diversity, density, and distribution) and abiotic parameters (humidity, temperature, precipitation, wind, air, soil quality, vibrations, and noise levels) to meet the goals of the monitoring program. This case study intends to provide a detailed overview of the management plan and monitoring program of two royal reserves and outlines the types of data gathered which can be made available for future research projects.Keywords: camera traps, desert ecosystem, enhancement, GPS tracking, management evaluation, monitoring, planting, restocking, restoration
Procedia PDF Downloads 117