Search results for: experiment under temperature change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15010

Search results for: experiment under temperature change

3880 Colonization of Embrionic Gonads of Nile Tilapia by Giant Gourami Testicular Germ Cells

Authors: Irma Andriani, Ita Djuwita, Komar Sumantadinata, Alimuddin

Abstract:

The recent study has been conducted to develop testicular germ cell transplantation as a tool for preservation and propagation of male germ-plasm from endangered fish species, as well as to produce surrogate broodstock of commercially valuable fish. Giant gourami testis had been used as a model for donor and Nile tilapia larvae as recipient. We developed testicular cell xenotransplantation by optimizing the timing of intraperitoneal cell transplantation to recipient larvae aged 1, 3, 5 and 7 days post hatching (dph). Freshly isolated testis of giant gourami weighing 600–800 g were minced in dissociation medium and then incubated for 3 hours in room temperature to collect monodisperce cell suspension. Donor cells labeled with PKH 26 were transplanted into the peritoneal cavity of Nile tilapia larvae using glass micropipettes. Parameters observed were survival rate of Nile tilapia larvae at 24 hours post transplantation (pt) and colonization efficiency of donor cells at 2 and 3 months pt. The incorporated donor cells were observed under fluorescent microscope. The result showed that the lowest survival rate at 24 hours pt was 1 dph larvae (82.74±6.76%) and the highest survival rate were 3 and 5 dph larvae (95.00±5.00% and 95.00±2.50%, respectively). The highest colonization efficiency was on 3 dph larvae (61.1±34.71%) and the lowest colonization efficiency was on 7 dph larvae (19.43±17.33%). In conclusion, 3 dph Nile tilapia larvae was the best recipient for giant gourami testicular germ cells xenotransplantation.

Keywords: xenotransplantation, testicular germ cell, giant gourami, Nile tilapia, colonization efficiency

Procedia PDF Downloads 567
3879 Biographical Learning and Its Impact on the Democratization Processes of Post War Societies

Authors: Rudolf Egger

Abstract:

This article shows some results of an ongoing project in Kosova. This project deals with the meaning of social transformation processes in the life-courses of Kosova people. One goal is to create an oral history archive in this country. In the last seven years we did some interpretative work (using narrative interviews) concerning the experiences and meanings of social changes from the perspective of life course. We want to reconstruct the individual possibilities in creating one's life in new social structures. After the terrible massacres of ethnical-territorially defined nationalism in former Yugoslavia it is the main focus to find out something about the many small daily steps which must be done, to build up a kind of “normality” in this country. These steps can be very well reconstructed by narrations, by life stories, because personal experiences are naturally linked with social orders. Each individual story is connected with further stories, in which the collective history will be negotiated and reflected. The view on the biographical narration opens the possibility to analyze the concreteness of the “individual case” in the complexity of collective history. Life stories contain thereby a kind of a transition character, that’s why they can be used for the reconstruction of periods of political transformation. For example: In the individual story we can find very clear the national or mythological character of the Albanian people in Kosova. The shown narrations can be read also as narrative lines in relation to the (re-)interpretation of the past, in which lived life is fixed into history in the so-called collective memory in Kosova.

Keywords: biographical learning, adult education, social change, post war societies

Procedia PDF Downloads 398
3878 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions

Authors: Vivian Wu

Abstract:

During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.

Keywords: apis mellifera, drone, flight behavior, weather, RFID

Procedia PDF Downloads 65
3877 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions

Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong

Abstract:

A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.

Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition

Procedia PDF Downloads 127
3876 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method

Authors: Amira Mabrouk, Chokri Abdennadher

Abstract:

The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.

Keywords: willingness to pay, contingent valuation, time value, city toll

Procedia PDF Downloads 403
3875 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation

Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta

Abstract:

Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.

Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD

Procedia PDF Downloads 384
3874 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 263
3873 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 95
3872 Estimation of Rock Strength from Diamond Drilling

Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi

Abstract:

The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.

Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength

Procedia PDF Downloads 117
3871 Racism in Drug Policies: A Report on United States Legislation

Authors: Frederick Monyepao

Abstract:

Crack cocaine first appeared on the scene in the form of cocaine freebasing in the late 1970s. Stockbrokers, investment bankers, rock stars, Hollywood elites, and a few pro athletes were regular users of the substance. As criminogenic factors associated with substance abuse began to surface, congress passed new legislation. The laws led to the increase of health coverage insurances and the expansion of hospitals. By the mid-1980s, crack use spread into America's inner cities among impoverished African Americans and Latinos. While substance abuse increased among minority communities, legislation pertaining to substance abuse evolved. The prison industry also expanded the number of cells available. A qualitative approach was taken, drawing from a range secondary sources for contextual analysis. This paper traces out the continued marginalisation and racist undertones towards minorities as perpetuated by certain drug policies. It was discovered that the new legislation on crack was instrumental in the largest incarcerations the United States ever faced. Drug offenders increased in prisons eightfold from 1986 to 2000. The paper concludes that American drug control policies are consistently irrational and ineffective when measured by levels of substance use and abuse. On the contrary, these policies have been successful as agents of social control in maintaining the stratification patterns of racial/ethnic minorities and women. To move beyond prohibition, radical law and policy reform may require a change in narratives on substance use.

Keywords: crack, drug policy, minorities, racism, substance abuse

Procedia PDF Downloads 265
3870 Geochemistry Identification of Volcanic Rocks Product of Krakatau Volcano Eruption for Katastropis Mitigation Planning

Authors: Agil Gemilang Ramadhan, Novian Triandanu

Abstract:

Since 1929, the first appearance in sea level, Anak Krakatau volcano growth relatively quickly. During the 80 years up to 2010 has reached the height of 320 meter above sea level. The possibility of catastrophic explosive eruption could happen again if the chemical composition of rocks from the eruption changed from alkaline magma into acid magma. Until now Anak Krakatau volcanic activity is still quite active as evidenced by the frequency of eruptions that produced ash sized pyroclastic deposits - bomb. Purpose of this study was to identify changes in the percentage of rock geochemistry any results eruption of Anak Krakatau volcano to see consistency change the percentage content of silica in the magma that affect the type of volcanic eruptions. Results from this study will be produced in the form of a diagram the data changes the chemical composition of rocks of Anak Krakatau volcano. Changes in the composition of any silica eruption are illustrated in a graph. If the increase in the percentage of silica is happening consistently and it is assumed to increase in the time scale of a few percent, then to achieve silica content of 68 % (acid composition) that will produce an explosive eruption will know the approximate time. All aspects of the factors driving the increased threat of danger to the public should be taken into account. Catastrophic eruption katatropis mitigation can be planned early so that when these disasters happen later, casualties can be minimized.

Keywords: Krakatau volcano, rock geochemistry, catastrophic eruption, mitigation

Procedia PDF Downloads 263
3869 Moving beyond the Gender Pay Gap: An Investigation of Pension Gender Inequalities across European Counties

Authors: Enva Doda

Abstract:

Recent statistical analyses within the European Union (EU) underscore the enduring significance of the Gender Pay Gap in amplifying the Gender Pension Gap, a phenomenon resisting proportional reduction over time. This study meticulously calculates the Pension Gap, scrutinizing contributing variables within diverse pension systems. Furthermore, it investigates whether the "unexplained" segment of the Gender Gap correlates with political institutions, economic systems, historical events, or discrimination, utilizing quantitative methods and the Blinder-Oaxaca Decomposition Method to pinpoint potential discriminatory factors. The descriptive analysis reveals a conspicuous Gender Pension Gap across European nations, displaying notable variation. While an overall reduction in the Gender Gap is observed, the degree of improvement varies among countries. Subsequent analyses will delve into the specific reasons or variables influencing distinct Gender Gap percentages, forming the basis for nuanced policy recommendations. This comprehensive research enriches the ongoing discourse on gender equality and economic equity. By focusing on the root causes of the Pension Gap, the study has the potential to instigate policy adjustments, urging policymakers to reassess systemic structures and contribute to informed decision-making. Emphasizing gender equality as essential for a flourishing and resilient economy, the research aspires to drive positive change on academic and policy fronts.

Keywords: blinder Oaxaca decomposition method, discrimination, gender pension gap, quantitative methods, unexplained gender gap

Procedia PDF Downloads 26
3868 Building Blocks for the Next eGovernment Era: Exploratory Study Based on Dubai and UAE’s Ministry of Happiness Communication in 2020

Authors: Diamantino Ribeiro, António Pedro Costa, Jorge Remondes

Abstract:

Dubai and the UAE governments have been investing in technology and digital communication for a long time. These governments are pioneers in introducing innovative strategies, policies and projects. They are also recognized worldwide for defining and implementing long term public programs. In terms of eGovernment Dubai and the UAE rank among the world’s most advanced. Both governments have surprised the world a few years ago by creating a Happiness Ministry. This paper focuses on UAE’s government digital strategies and its approach to the next era. The main goal of this exploratory study is to understand the new era of eGovernment and transfer of the happiness and wellness programs. Data were collected from the corpus latente and analysis was anchored in qualitative methodology using content analysis and observation as analysis techniques. The study allowed to highlight that the 2020 government reshuffle has a strong focus on digital reorganisation and digital sustainability, one of the newest trends in sustainability. Regarding happiness and wellbeing portfolio, we were able to observe that there has been a major change within the government organisation: The Ministry of Happiness was extinct and the Ministry of Community Development will manage the so-called ‘Happiness Portfolio’. Additionally, our observation allowed to note the government dual approach to governance: one through digital transformation, thus enhancing the digital sustainability process and, the second one trough government development.

Keywords: ministry of happiness, eGovernment, communication, digital sustainability

Procedia PDF Downloads 125
3867 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films

Authors: Padmalochan Panda, R. Ramaseshan

Abstract:

Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.

Keywords: ellipsometry, GIXRD, hardness, XAS

Procedia PDF Downloads 99
3866 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites

Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda

Abstract:

The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.

Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime

Procedia PDF Downloads 422
3865 The Influence of Hydrolyzed Cartilage Collagen on General Mobility and Wellbeing of an Active Population

Authors: Sara De Pelsmaeker, Catarina Ferreira da Silva, Janne Prawit

Abstract:

Recent studies show that enzymatically hydrolysed collagen is absorbed and distributed to joint tissues, where it has analgesic and active anti-inflammatory properties. Reviews of the associated relevant literature also support this theory. However, these studies are all using hydrolyzed collagen from animal hide or skin. This study looks into the effect of daily supplementation of hydrolyzed cartilage collagen (HCC), which has a different composition. A consumer study was set up using a double-blind placebo-controlled design with a control group using twice a day 0.5gr of maltodextrin and an experimental group using twice 0.5g of HCC, over a trial period of 12 weeks. A follow-up phase of 4 weeks without supplementation was taken into the experiment to investigate the ‘wash-out’ phase. As this consumer study was conducted during the lockdown periods, a specific app was designed to follow up with the participants. The app had the advantage that in this way, the motivation of the participants was enhanced and the drop-out range of participants was lower than normally seen in consumer studies. Participants were recruited via various sports and health clubs across the UK as we targeted a general population of people that considered themselves in good health. Exclusion criteria were ‘not experiencing any medical conditions’ and ‘not taking any prescribed medication’. A minimum requirement was that they regularly engaged in some level of physical activity. The participants had to log the type of activity that they conducted and the duration of the activity. Weekly, participants were providing feedback on their joint health and subjective pain using the validated pain measuring instrument Visual Analogue Scale (VAS). The weekly repoAbstract Public Health and Wellbeing Conferencerting section in the app was designed with simplicity and based on the accuracy demonstrated in previous similar studies to track subjective pain measures of participants. At the beginning of the trial, each participant indicated their baseline on joint pain. The results of this consumer study indicated that HCC significantly improved joint health and subjective pain scores compared to the placebo group. No significant differences were found between different demographic groups (age or gender). The level of activity, going from high intensive training to regular walking, did not significantly influence the effect of the HCC. The results of the wash-out phase indicated that when the participants stopped the HCC supplementation, their subjective pain scores increased again to the baseline. In conclusion, the results gave a positive indication that the daily supplementation of HCC can contribute to the overall mobility and wellbeing of a general active population

Keywords: VAS-score, food supplement, mobility, joint health

Procedia PDF Downloads 145
3864 Novel Emulgel of Piroxicam for Topical Application with Mentha and Clove Oil

Authors: S. V. Patil, P. S. Dounde, S. S. Patil

Abstract:

Emulgels have emerged as one of the most interesting topical delivery system as it has dual release control system that is gel and emulsion. The major objective behind this formulation is delivery of hydrophobic drugs to systemic circulation via skin. In fact presence of a gelling agent in water phase converts a classical emulsion in to emulgel. The emulgel for dermatological use has several favorable properties such as being thixotropic, greaseless, easily spreadable, easily removable, emollient, non-staining, water-soluble, longer shelf life, bio-friendly, transparent and pleasing appearance. Various penetration enhancers can potentiate the effect. So this can be used as better topical drug delivery systems over present conventional systems available in market. Piroxicam is a non-steroidal anti-inflammatory drug that has major problems when administered orally; it is an insoluble drug and has irritant effect on gastro intestinal tract lead to ulceration and bleeding. The aim of this study was to overcoming these problems through preparation of topical emulgel of this drug. Emulgel of Piroxicam was prepared using Carbopol 940 along with mentha oil and clove oil as permeation enhancer. The prepared emulgel were evaluated for their physical appearance, pH determination, viscosity, spreadability, in vitro drug release, ex vivo permeation studies. All the prepared formulations showed acceptable physical properties, homogeneity, consistency, spreadability, viscosity and pH value. The emulgel was found to be stable with respect to physical appearance, pH, rheological properties and drug content at all temperature and conditions for three month.

Keywords: emulgel, piroxicam, menthe oil, clove oil

Procedia PDF Downloads 442
3863 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 120
3862 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 147
3861 Molecular Portraits: The Role of Posttranslational Modification in Cancer Metastasis

Authors: Navkiran Kaur, Apoorva Mathur, Abhishree Agarwal, Sakshi Gupta, Tuhin Rashmi

Abstract:

Aim: Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. Glycosylation of proteins is one of the most important post-translational modifications. It is widely known that aberrant glycosylation has been implicated in many different diseases due to changes associated with biological function and protein folding. Alterations in cell surface glycosylation, can promote invasive behavior of tumor cells that ultimately lead to the progression of cancer. In breast cancer, there is an increasing evidence pertaining to the role of glycosylation in tumor formation and metastasis. In the present study, an attempt has been made to study the disease associated sialoglycoproteins in breast cancer by using bioinformatics tools. The sequence will be retrieved from UniProt database. A database in the form of a word document was made by a collection of FASTA sequences of breast cancer gene sequence. Glycosylation was studied using yinOyang tool on ExPASy and Differential genes expression and protein analysis was done in context of breast cancer metastasis. The number of residues predicted O-glc NAc threshold containing 50 aberrant glycosylation sites or more was detected and recorded for individual sequence. We found that the there is a significant change in the expression profiling of glycosylation patterns of various proteins associated with breast cancer. Differential aberrant glycosylated proteins in breast cancer cells with respect to non-neoplastic cells are an important factor for the overall progression and development of cancer.

Keywords: breast cancer, bioinformatics, cancer, metastasis, glycosylation

Procedia PDF Downloads 275
3860 An Interior Design Project Interventions about Changing Student Beliefs about Poverty, Homelessness, and Community Service

Authors: Alireza Derambakhsh

Abstract:

The reason for this study was to inspect undergraduate interior design student state of mind toward destitution, vagrancy, and group administration. An auxiliary intention was to figure out whether introduction to plan ventures for the individuals who have encountered hardship would change student convictions. All first year recruits (n = 18), sophomore (n = 26), junior (n = 17), and senior (n = 25) interior design undergraduate students at a public university completed a questionnaire in light of a few current scales. Amid the semester, the sophomores dealt with assignments that were intended to provide exposure to different socio-economic groups. Students finished three projects. Initially, the outline of a makeshift destitute asylum. Second, a re-model of a childcare focus office and gathering region that gives administrations to low-salary families, and third, the outline of a low-wage, private home. In these ventures, students were obliged to direct broad data assembling so they could better comprehend the issues connected with destitution. Toward the end of the semester, the sophomores finished the survey again and were asked extra inquiries in regards to the class and projects. Students’ sentiments towards the poor were more individualistic when contrasted with the white collar class, yet when the working class correlation was uprooted, some of their mentality gave a more unpredictable comprehension of destitution and vagrancy. The semester-long intercession fundamentally moved students' understanding that underscored auxiliary and multifaceted reason.

Keywords: interior design, destitution, vagrancy, group administration

Procedia PDF Downloads 408
3859 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity

Procedia PDF Downloads 284
3858 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades

Authors: M. Javahar, H. B. Dong

Abstract:

Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.

Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting

Procedia PDF Downloads 566
3857 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 104
3856 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar

Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures

Keywords: K-feldspar, grinding, automated mineralogy, impurity, leaching

Procedia PDF Downloads 60
3855 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 197
3854 Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection

Authors: Anupriya, Bikramjit Sinfh, Radhay Shyam

Abstract:

In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag.

Keywords: total pressure loss, flame holder, supersonic combustion, combustion efficiency, cavity, nozzle

Procedia PDF Downloads 77
3853 Uncertainty Assessment in Building Energy Performance

Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud

Abstract:

The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.

Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method

Procedia PDF Downloads 440
3852 Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations

Authors: Ahmed Ramadhan Al-Obaidi, Jassim Alhamid

Abstract:

In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement.

Keywords: corrugated ring angle, corrugated diameter, Nusselt number, heat transfer

Procedia PDF Downloads 123
3851 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption

Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout

Abstract:

The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.

Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob

Procedia PDF Downloads 255