Search results for: volumetric mass density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6864

Search results for: volumetric mass density

5784 Pavement Quality Evaluation Using Intelligent Compaction Technology: Overview of Some Case Studies in Oklahoma

Authors: Sagar Ghos, Andrew E. Elaryan, Syed Ashik Ali, Musharraf Zaman, Mohammed Ashiqur Rahman

Abstract:

Achieving desired density during construction is an important indicator of pavement quality. Insufficient compaction often compromises pavement performance and service life. Intelligent compaction (IC) is an emerging technology for monitoring compaction quality during the construction of asphalt pavements. This paper aims to provide an overview of findings from four case studies in Oklahoma involving the compaction quality of asphalt pavements, namely SE 44th St project (Project 1) and EOC Turnpike project (Project 2), Highway 92 project (Project 3), and 108th Avenue project (Project 4). For this purpose, an IC technology, the intelligent compaction analyzer (ICA), developed at the University of Oklahoma, was used to evaluate compaction quality. Collected data include GPS locations, roller vibrations, roller speed, the direction of movement, and temperature of the asphalt mat. The collected data were analyzed using a widely used software, VETA. The average densities for Projects 1, 2, 3 and 4, were found as 89.8%, 91.50%, 90.7% and 87.5%, respectively. The maximum densities were found as 94.6%, 95.8%, 95.9%, and 89.7% for Projects 1, 2, 3, and 4, respectively. It was observed that the ICA estimated densities correlated well with the field core densities. The ICA results indicated that at least 90% of the asphalt mats were subjected to at least two roller passes. However, the number of passes required to achieve the desired density (94% to 97%) differed from project to project depending on the underlying layer. The results of these case studies show both opportunities and challenges in using IC for monitoring compaction quality during construction in real-time.

Keywords: asphalt pavement construction, density, intelligent compaction, intelligent compaction analyzer, intelligent compaction measure value

Procedia PDF Downloads 155
5783 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites

Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile, flexural and impact behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/HDPE composites when compared to the pure HDPE and unmodified fibers reinforced composites.

Keywords: palm fibers, polymer composites, mechanical properties, high density polyethylene (HDPE)

Procedia PDF Downloads 394
5782 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 151
5781 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy

Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro

Abstract:

Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.

Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer

Procedia PDF Downloads 132
5780 The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography

Authors: Noor Arda Adrina Daud, Mohd Hanafi Ali

Abstract:

The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality.

Keywords: compensating filter, aluminum, image quality, lateral, thoracolumbar

Procedia PDF Downloads 513
5779 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil

Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo

Abstract:

In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.

Keywords: bioprocess, bioremediation, biosorption, copper

Procedia PDF Downloads 386
5778 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 556
5777 A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces

Authors: Abas Mohsenzadeh, Mina Arya, Kim Bolton

Abstract:

Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results.

Keywords: BEP, DFT, hydrocarbon combustion, metal surfaces, TSS

Procedia PDF Downloads 254
5776 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, quality of service, routing protocols, VANET

Procedia PDF Downloads 468
5775 Study of the Landslide and Stability of Open Pit Quarry: Case of Open Pite Quarry of Chouf Amar M'sila, Algeria

Authors: Saadoun Abd Errazak, Hafssaoui Abdallah, Fredj Mohamed

Abstract:

Mining operations open induce risks of instability that can cause landslides and collapse at the bleachers slope. These risks may occur both during and after the operation phase. The magnitude of these risks depends on the mechanical and physical characteristics of the rock mass, the geometrical dimensions of ore bodies, their spatial arrangement, and the state of the operated area. If security and technology measures are not taken into account for this purpose, the environment will be affected. The main objective of this work is to assess these risks by analytical and numerical methods. The study is based on the geological, hydrogeological and geotechnical rock mass of the open pit quarry of Chouf Amar M'sila. The results obtained have allowed us to obtain an acceptable factor of safety and stability study of the open pit.

Keywords: stability, land sliding, numerical modeling, safety factor, open-pit quarry

Procedia PDF Downloads 371
5774 Structural and Electronic Properties of Cd0.75V0.25S Alloy

Authors: H. Baltache, M. El Amine. Monir, R. Khenata, D. Rached, T. Seddik

Abstract:

The first principles calculations based on the density functional theory (DFT) by using the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) in order to investigate the structural and electronic properties of Cd1-xVxS alloy at x = 0.25 in zincblende structure. For the structural properties, we have calculated the equilibrium lattice parameters, such as lattice constant, bulk modulus and first pressure derivatives of the bulk modulus. From the electronic structure, we obtain that Cd0.75V0.25S alloy is nearly half-metallic. The analysis of the density of states (DOS) curves allow to evaluate the spin-exchange splitting energies Δx(d) and Δx(pd) that are generated by V-3d states, where the effective potential for spin-down case is attractive than for spin-up case. Calculations of the exchange constants N0α (valence band) and N0β (conduction band) are served to describe the magnetic behavior of the compounds.

Keywords: first-principles calculations, structural properties, electronic properties

Procedia PDF Downloads 363
5773 Comparative Exergy Analysis of Ammonia-Water Rankine Cycles and Kalina Cycle

Authors: Kyoung Hoon Kim

Abstract:

This paper presents a comparative exergy analysis of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the exergetical performance of the systems. Results show that maximum exergy efficiency can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better exergy efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Keywords: ammonia-water, Rankine cycle, Kalina cycle, exergy, exergy destruction, low-temperature heat source

Procedia PDF Downloads 160
5772 Investigation of Resistive Switching in CsPbCl₃ / Cs₄PbCl₆ Core-Shell Nanocrystals Using Scanning Tunneling Spectroscopy: A Step Towards High Density Memory-based Applications

Authors: Arpan Bera, Rini Ganguly, Raja Chakraborty, Amlan J. Pal

Abstract:

To deal with the increasing demands for the high-density non-volatile memory devices, we need nano-sites with efficient and stable charge storage capabilities. We prepared nanocrystals (NCs) of inorganic perovskite, CsPbCl₃ coated with Cs₄PbCl₆, by colloidal synthesis. Due to the type-I band alignment at the junction, this core-shell composite is expected to behave as a charge trapping site. Using Scanning Tunneling Spectroscopy (STS), we investigated voltage-controlled resistive switching in this heterostructure by tracking the change in its current-voltage (I-V) characteristics. By applying voltage pulse of appropriate magnitude on the NCs through this non-invasive method, different resistive states of this system were systematically accessed. For suitable pulse-magnitude, the response jumped to a branch with enhanced current indicating a high-resistance state (HRS) to low-resistance state (LRS) switching in the core-shell NCs. We could reverse this process by using a pulse of opposite polarity. These two distinct resistive states can be considered as two logic states, 0 and 1, which are accessible by varying voltage magnitude and polarity. STS being a local probe in space enabled us to capture this switching at individual NC site. Hence, we claim a bright prospect of these core-shell NCs made of inorganic halide perovskites in future high density memory application.

Keywords: Core-shell perovskite, CsPbCl₃-Cs₄PbCl₆, resistive switching, Scanning Tunneling Spectroscopy

Procedia PDF Downloads 88
5771 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 59
5770 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number

Authors: Hichem Boulechfar, Mahfoud Djezzar

Abstract:

Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.

Keywords: double diffusive, natural convection, porous media, elliptical annulus

Procedia PDF Downloads 205
5769 Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures

Authors: M. Shahina, K. Fakruddin, C. M. Subhan, S. Rangappa

Abstract:

In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.

Keywords: liquid crystals, optical textures, transition temperature, birefringence, polarizability

Procedia PDF Downloads 285
5768 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation

Authors: Razieh Teimouri

Abstract:

Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).

Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset

Procedia PDF Downloads 228
5767 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete

Abstract:

Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.

Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed

Procedia PDF Downloads 20
5766 Dimensionless Binding Values in the Evaluation of Paracetamol Tablet Formulation

Authors: Abayomi T. Ogunjimi, Gbenga Alebiowu

Abstract:

Mechanical properties of paracetamol tablets containing Neem (Azadirachta indica) gum were compared with standard Acacia gum BP as binder. Two dimensionless binding quantities BEN and BEC were used in assessing the influence of binder type on two mechanical properties, Tensile Strength (TS) and Brittle Fracture Index (BFI). The two quantities were also used to assess the influence of relative density and binder concentration on TS and BFI as well as compare Binding Efficiencies (BE). The result shows that TS is dependent on relative density, binder type and binder concentration while BFI is dependent on the binder type and binder concentration; and that although, the inclusion of NMG in a paracetamol tablet formulation may not enhance the TS of the tablets produced, however it will decrease the tendency of the tablets to cap or laminate. This work concludes that BEN may be useful in quantitative assessment while BEC may be appropriate for qualitative assessment.

Keywords: binding efficiency, brittle fracture index, dimensionless binding, tensile strength

Procedia PDF Downloads 249
5765 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)

Procedia PDF Downloads 424
5764 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition

Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.

Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation

Procedia PDF Downloads 317
5763 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs

Authors: Kim Duc Hoang, Hyeong Joon Ahn

Abstract:

Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.

Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring

Procedia PDF Downloads 351
5762 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 90
5761 Mass Media and Electoral Conflict Management in Kogi State, Nigeria

Authors: Okpanachi Linus Odiji, Chris Ogwu Attah

Abstract:

Election is no doubt widely assumed as one of the most suitable means of resolving political quagmires even though it has never been bereft of conflict which can manifest before, during, or after polls. What, however, advances democracy and promotes electoral integrity is the existence and effectiveness of institutional frameworks for electoral conflict management. Electoral conflicts are no doubt unique in the sense that they represent the struggles of people over the control of public resources. In most cases, the stakes involved are high and emotional that they do not only undermine inter-group relationship but also threaten national security. The need, therefore, for an effectively functional conflict management apparatus becomes imperative. While at the State level, there exist numerous governmental initiatives at various electoral stages aimed at managing conflicts, this paper examines the activities of the mass media, which is another prominent stakeholder in the electoral process. Even though media influence has increased tremendously in the last decade, researchers are yet to agree on its utility in the management of conflicts. Guided by the social responsibility theory of media reporting and drawing data from observed trends in Kogi state, the paper, which context analyses the 2019 gubernatorial election coverage in the state, observes both conflict escalation and de-escalation roles in the media. To mitigate conflict reporting misrepresentation, therefore, a common approach to conflict reporting should be designed and ordered by the National Broadcasting Commission as well as the Nigerian Press Council. This should be garnished with the training of journalists on conflict reporting and development of a standard conflict reporting procedure.

Keywords: conflict management, electoral conflict, mass media, media reporting

Procedia PDF Downloads 148
5760 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement

Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy

Abstract:

Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.

Keywords: compressive strength, concrete, polypropylene, sustainability

Procedia PDF Downloads 140
5759 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 262
5758 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes

Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi

Abstract:

The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.

Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm

Procedia PDF Downloads 303
5757 Designing of a Micromechanical Gyroscope with Enhanced Bandwidth

Authors: Bator Shagdyrov, Elena Zorina, Tamara Nesterenko

Abstract:

The aim of the research was to develop a design of micromechanical gyroscope, which will be used in the automotive industry, safety systems and anti-lock braking system. The research resulted in improvement of one of the technical parameters – bandwidth. In the process of mass production of micromechanical sensors, problems occurred with their use. One of the problems was a narrow bandwidth typical for the gyroscopes with a high-quality factor. A constructive way of increasing bandwidth is to use multimass systems via secondary oscillations axis. When constructing, the main task was to choose the frequency - phases and antiphases as close to each other as possible, and set the frequency of the primary oscillation evenly between them. Investigations are carried out using the T-Flex CAD finite element program and T-Flex ANALYSIS support package. The results obtained are planned to use in the future for the production of an experimental model of development and testing in practice of characteristics derived by theoretical means.

Keywords: bandwidth, inertial mass, mathematical model, micromechanical gyroscope, micromechanics

Procedia PDF Downloads 258
5756 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 115
5755 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads

Authors: Hamid Ahmadi, Amirreza Ghaffari

Abstract:

Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.

Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test

Procedia PDF Downloads 717