Search results for: virus detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4042

Search results for: virus detection

2962 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 270
2961 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 76
2960 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators

Procedia PDF Downloads 203
2959 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode

Authors: S. B. Mayil Vealan, C. Sekar

Abstract:

Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.

Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials

Procedia PDF Downloads 86
2958 Neural Networks with Different Initialization Methods for Depression Detection

Authors: Tianle Yang

Abstract:

As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.

Keywords: depression, neural network, Xavier initialization, Kaiming initialization

Procedia PDF Downloads 128
2957 Women's Perceptions of Zika Virus Prevention Recommendations: A Tale of Two Cities within Fortaleza, Brazil

Authors: Jeni Stolow, Lina Moses, Carl Kendall

Abstract:

Zika virus (ZIKV) reemerged as a global threat in 2015 with Brazil at its epicenter. Brazilians have a long history of combatting Aedes aegypti mosquitos as it is a common vector for dengue, chikungunya, and yellow fever. As a response to the epidemic, public health authorities promoted ZIKV prevention behaviors such as mosquito bite prevention, reproductive counseling for women who are pregnant or contemplating pregnancy, pregnancy avoidance, and condom use. Most prevention efforts from Brazil focused on the mosquito vector- utilizing recycled dengue approaches without acknowledging the context in which women were able to adhere to these prevention messages. This study used qualitative methods to explore how women in Fortaleza, Brazil perceive ZIKV, the Brazilian authorities’ ZIKV prevention recommendations, and the feasibility of adhering to these recommendations. A core study aim was to look at how women perceive their physical, social, and natural environment as it impacts women’s ability to adhere to ZIKV prevention behaviors. A Rapid Anthropological Assessment (RAA) containing observations, informational interviews, and semi-structured in-depth interviews were utilized for data collection. The study utilized Grounded Theory as the systematic inductive method of analyzing the data collected. Interviews were conducted with 35 women of reproductive age (15-39 years old), who primarily utilize the public health system. It was found that women’s self-identified economic class was associated with how strongly women felt they could prevent ZIKV. All women interviewed technically belong to the C-class, the middle economic class. Although all members of the same economic class, there was a divide amongst participants as to who perceived themselves as higher C-class versus lower C-class. How women saw their economic status was dictated by how they perceived their physical, social, and natural environment. Women further associated their environment and their economic class to their likelihood of contracting ZIKV, their options for preventing ZIKV, their ability to prevent ZIKV, and their willingness to attempt to prevent ZIKV. Women’s perceived economic status was found to relate to their structural environment (housing quality, sewage, and locations to supplies), social environment (family and peer norms), and natural environment (wetland areas, natural mosquito breeding sites, and cyclical nature of vectors). Findings from this study suggest that women’s perceived environment and economic status impact their perceived feasibility and desire to attempt behaviors to prevent ZIKV. Although ZIKV has depleted from epidemic to endemic status, it is suggested that the virus will return as cyclical outbreaks like that seen with similar arboviruses such as dengue and chikungunya. As the next ZIKV epidemic approaches it is essential to understand how women perceive themselves, their abilities, and their environments to best aid the prevention of ZIKV.

Keywords: Aedes aegypti, environment, prevention, qualitative, zika

Procedia PDF Downloads 133
2956 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method

Authors: Ionel D. Craiu, Mihai Nedelcu

Abstract:

Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.

Keywords: damage detection, generalized beam theory, inverse finite element method, shape sensing

Procedia PDF Downloads 113
2955 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
2954 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 341
2953 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 239
2952 Acute Hepatitis A Outbreak in Men Who Has Sex with Men in a Medical Center in Northern Taiwan

Authors: Yu-Tzu Hsu, Alice Wu, Hsiang-Kuang Tseng

Abstract:

Introduction: Hepatitis A virus causes acute hepatitis and is usually transmitted by a fecal-oral route of food contamination, which is more prevalent in areas with poor hygienic practices. However, we described a hepatitis A outbreak associated with a fecal-oral route of sexual behavior in men who has sex with men (MSM) in Northern Taiwan. Methods: We retrospectively collected patients with acute HAV infection in MacKay Memorial Hospital, Taipei, Taiwan between July 2015 and November 2016. Demographic data (age, gender, onset time and infection risk), laboratory data (GOT, GPT, bilirubin, HIV status, HBsAg, HCV antibody and syphilis), clinical symptoms and travel history with a foreign tour were analyzed. We compared variables between HIV and non-HIV group. Unless otherwise stated, continuous variables were expressed as mean ± SD, and categorical variables were expressed as number (percentage) for each item. The t test for continuous variables was applied for the comparison between two groups and chi-square for categorical variables were applied for measures of association. Results: We collected 80 cases during the study period. Among them, 54 (67.5%) cases were MSM and 43 (53.8%) cases were HIV positive. The average age was 32.6±7.59 years-old. The average value of initial liver function was 1324 IU/L for AST (GOT), 2100 IU/L for ALT (GPT), and 5.82 mg/dL for bilirubin. We found seven (8.6%) cases were in the status of HBV carrier, five (6.3%) cases were positive for HCV antibody, and 15 (18.6%) cases were co-infected with syphilis. With regards to associated symptoms, 32 (40%) had fever, 46 (57.5%) had nausea, 34 (42.5%) had abdominal discomfort and 46 (57.5%) had general malaise. To compare the non-HIV patients with HIV patients, HIV patients were more likely to be male (p=0.008), MSM (p=0.000), co-infected syphilis (p=0.000) and slowly improving liver function of transaminases (p=0.033, 0.027). Conclusion: The HAV outbreak in Northern Taiwan was mainly occurred in MSM population. Hereafter, our cohort data support a policy in Taiwan to provide one dose of free HAV vaccine shot in this population. Hopefully, the outbreak could be stop by the free vaccine policy and public education.

Keywords: acute hepatitis A, men who has sex with men, human immunodeficiency virus, vaccine

Procedia PDF Downloads 203
2951 A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine

Authors: Natasha Mandal, Rakesh Singh Moirangthem

Abstract:

The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis.

Keywords: biosensor, surface plasmon resonance, dielectric spacer, 2D nanomaterials

Procedia PDF Downloads 106
2950 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples

Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier

Abstract:

The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.

Keywords: archaea, bacteria, detection, FISH, fluorescence

Procedia PDF Downloads 387
2949 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 144
2948 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images

Authors: Mekha Mathew, Varun P Gopi

Abstract:

Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.

Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform

Procedia PDF Downloads 485
2947 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 104
2946 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 413
2945 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 149
2944 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 263
2943 New Features for Copy-Move Image Forgery Detection

Authors: Michael Zimba

Abstract:

A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.

Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery

Procedia PDF Downloads 543
2942 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 97
2941 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP

Authors: Diptiman Dinda, Shyamal Kumar Saha

Abstract:

In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.

Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection

Procedia PDF Downloads 440
2940 Climate Change and Dengue Transmission in Lahore, Pakistan

Authors: Sadia Imran, Zenab Naseem

Abstract:

Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.

Keywords: Dengue, epidemic, globalization, climate change

Procedia PDF Downloads 233
2939 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 101
2938 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 98
2937 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, imbalanced datasets, sampling algorithms, big data

Procedia PDF Downloads 328
2936 Intelligent Crowd Management Systems in Trains

Authors: Sai S. Hari, Shriram Ramanujam, Unnati Trivedi

Abstract:

The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding.

Keywords: canny edge detection, comparison, encapsulation, redirection

Procedia PDF Downloads 333
2935 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL

Authors: Ankit Shai

Abstract:

CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.

Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx

Procedia PDF Downloads 292
2934 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 102
2933 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 155