Search results for: tightly coupled memory
1652 Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS
Authors: Alexandre Gonzalez, Zohra Benfodda, David Bénimélis, Jean-Xavier Fontaine, Roland Molinié, Patrick Meffre
Abstract:
Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species.Keywords: tillandsia, headspace solid phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), scentless flowers, volatile organic compounds (VOCs), PCA analysis, heatmap
Procedia PDF Downloads 1241651 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1941650 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 641649 Intelligent Electric Vehicle Charging System (IEVCS)
Authors: Prateek Saxena, Sanjeev Singh, Julius Roy
Abstract:
The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid
Procedia PDF Downloads 7911648 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid
Procedia PDF Downloads 4171647 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan
Abstract:
Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy
Procedia PDF Downloads 3091646 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities
Authors: Sumit Kumar Vishwakarma
Abstract:
The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity
Procedia PDF Downloads 1271645 Feature Selection for Production Schedule Optimization in Transition Mines
Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li
Abstract:
The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule
Procedia PDF Downloads 1691644 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 2421643 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications
Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi
Abstract:
In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect
Procedia PDF Downloads 4251642 Scanning Electrochemical Microscopy Studies of Magnesium-Iron Galvanic Couple
Authors: Akram Alfantazi, Tirdad Nickchi
Abstract:
Magnesium galvanic corrosion plays an important role in the commercialization of Mg alloys in the automobile industry. This study aims at visualizing the electrochemical activity of the magnesium surface being coupled with pure iron in sulfate-chloride solutions. Scanning electrochemical microscopy was used to monitor the chemical activity of the surface and the data was compared with the conventional corrosion results such as potentiodynamic polarization, linear polarization, and immersion tests. The SECM results showed that the chemical reactivity of Mg is higher than phosphate-permanganate-coated Mg. Regions in the vicinity of the galvanic couple boundary are very active in the magnesium phase and fully protected in the iron phase. Scanning electrochemical microscopy results showed that the conversion coating provided good corrosion resistance for magnesium in the short-term but fails at long-term testing.Keywords: corrosion, galvanic corrosion, magnesium, scanning electrochemical microscopy
Procedia PDF Downloads 2881641 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum
Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu
Abstract:
Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet
Procedia PDF Downloads 1991640 A Fluorescent Polymeric Boron Sensor
Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu
Abstract:
Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.Keywords: boron, fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 2831639 Efficient Layout-Aware Pretraining for Multimodal Form Understanding
Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose
Abstract:
Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention
Procedia PDF Downloads 1481638 Simulation of Wave Propagation in Multiphase Medium
Authors: Edip Kemal, Sheshov Vlatko, Bojadjieva Julijana, Bogdanovic ALeksandra, Gjorgjeska Irena
Abstract:
The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way.Keywords: wave propagation, multiphase model, numerical methods, finite element method
Procedia PDF Downloads 1641637 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants
Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha
Abstract:
Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12.Keywords: cascade system, refrigerants, thermodynamic model, production engineering
Procedia PDF Downloads 3611636 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York
Authors: Haowei Lu, Anaya Aaron
Abstract:
Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty
Procedia PDF Downloads 321635 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 5591634 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 891633 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects
Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost
Abstract:
A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet
Procedia PDF Downloads 3671632 Structural and Magnetic Properties of Mn-Doped 6H-SiC
Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif
Abstract:
n-Type 6H-SiC(0001) substrates were implanted with three fluencies of Mn+ 5x1015 Mn/cm2 (Mn content: 0.7%), 1x1016 (~2 %), and 5x1016 cm–2 (7%) with implantation energy of 80 keV and substrate temperature of 365ºC. The samples were characterized using Rutherford Backscattering and Channeling Spectroscopy (RBS/C), High-Resolution X-Ray Diffraction technique (HRXRD), micro-Raman Spectroscopy (μRS), and Superconducting Quantum Interference Device (SQUID) techniques. The aim of our work is to investigate implantation induced defects with dose and to study any correlation between disorder-composition and magnetic properties. In addition, ab-initio calculations were used to investigate the structural and magnetic properties of Mn-doped 6H-SiC. Various configurations of Mn sites and vacancy types were considered. The calculations showed that a substitutional Mn atom at Si site possesses larger magnetic moment than Mn atom at C site. A model is introduced to explain the dependence of the magnetic structure on site occupation. The magnetic properties of ferromagnetically (FM) and antiferromagnetically (AFM) coupled pairs of Mn atoms with and without neighboring vacancies have also been explored.Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide
Procedia PDF Downloads 3241631 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta
Authors: G. A. Asciak, C. Camilleri, A. Rizzo
Abstract:
The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood
Procedia PDF Downloads 2431630 Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain
Authors: Milad Zoghi, M. Zahangir Kabir
Abstract:
Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties.Keywords: armchair graphene nanoribbon, resonant tunneling diode, uniaxial strain, peak to valley ratio
Procedia PDF Downloads 1781629 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 1371628 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers
Authors: Ionel Zagan, Vasile Gheorghita Gaitan
Abstract:
The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.Keywords: hardware scheduler, nMPRA processor, real-time systems, scheduling methods
Procedia PDF Downloads 2671627 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.Keywords: bio-heat, boussinesq, conduction, convection, eye
Procedia PDF Downloads 3451626 QI Wireless Charging a Scope of Magnetic Inductive Coupling
Authors: Sreenesh Shashidharan, Umesh Gaikwad
Abstract:
QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled.Keywords: inductive electric power, electromagnetic induction, magnetic flux, coupling
Procedia PDF Downloads 7321625 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks
Authors: Walid Fantazi
Abstract:
The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.Keywords: WSN, indexing data, SOA, RIA, geographic information system
Procedia PDF Downloads 2531624 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 1191623 Characterization of Calcium-Signalling Mediated by Human GPR55 Expressed in HEK293 Cells
Authors: Yousuf M. Al Suleimani, Robin Hiley
Abstract:
The endogenous phospholipid lysophosphatidylinositol (LPI) was recently identified as a novel ligand for the G protein-coupled receptor 55 (GPR55) and an inducer of intracellular Ca2+ [Ca2+]i release. This study attempts to characterize Ca2+ signals provoked by LPI in HEK293 cells engineered to stably express human GPR55 and to test cannabinoid ligand activity at GPR55. The study shows that treatment with LPI stimulates a sustained, oscillatory Ca2+ release. The response is characterized by an initial rapid rise, which is mediated by the Gαq-PLC-IP3 pathway, and this is followed by prolonged oscillations that require RhoA activation. Ca2+ oscillations are initiated by intracellular mechanisms and extracellular Ca2+ is only required to replenish Ca2+ lost from the cytoplasm. Analysis of cannabinoid ligand activity at GPR55 revealed no clear effect of the endocannabinoid anandamide, however, rimonabant and the CB1 receptor antagonist AM251 evoked GPR55-mediated [Ca2+]i. Thus, LPI is likely to be a key plasma membrane mediator of signaling events and changes in gene expression through GPR55 activation.Keywords: lysophosphatidylinositol, calcium, GPR55, cannabinoid
Procedia PDF Downloads 359