Search results for: soil compaction method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20934

Search results for: soil compaction method

19854 Cantilever Secant Pile Constructed in Sand: Capping Beam-Piles Bending Moments Interaction

Authors: Khaled R. Khater

Abstract:

this paper is an extension to previously published two papers; all share the first part of their titles. The papers theme is soil-structure interaction in the ground of soil retaining structures. The secant pile wall is the concern, while the focus is its capping beam. The earlier papers suggested a technique to structurally analyze capping beam. It has been proved that; pile rigidity shares the capping beam rigidity to resist the wall deformations. The current paper explains how the beam-pile integration re-distributes the pile’s bending moment for the benefits of wall deformations. It is concluded that re-distribution of pile bending moment is completely different than the calculated by plain strain analysis, values, and distributions. The pile diameter, beam rigidity, pile spacing, and the 3D-analysis-effect individually or all together affect the pile bending moment. The Plaxis-2D and STAAD-Pro 3D are the used software’s. Throughout this study, three sand densities, various pile and beam rigidities, and three excavation depths, i.e., 3.0-m, 4.0-m and 5.0-m have been considered.

Keywords: bending moment, capping beam, numerical analysis, secant pile, sandy soil

Procedia PDF Downloads 163
19853 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils

Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh

Abstract:

This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.

Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional

Procedia PDF Downloads 201
19852 The Social Ecology of Serratia entomophila: Pathogen of Costelytra giveni

Authors: C. Watson, T. Glare, M. O'Callaghan, M. Hurst

Abstract:

The endemic New Zealand grass grub (Costelytra giveni, Coleoptera: Scarabaeidae) is an economically significant grassland pest in New Zealand. Due to their impacts on production within the agricultural sector, one of New Zealand's primary industries, several methods are being used to either control or prevent the establishment of new grass grub populations in the pasture. One such method involves the use of a biopesticide based on the bacterium Serratia entomophila. This species is one of the causative agents of amber disease, a chronic disease of the larvae which results in death via septicaemia after approximately 2 to 3 months. The ability of S. entomophila to cause amber disease is dependant upon the presence of the amber disease associated plasmid (pADAP), which encodes for the key virulence determinants required for the establishment and maintenance of the disease. Following the collapse of grass grub populations within the soil, resulting from either natural population build-up or application of the bacteria, non-pathogenic plasmid-free Serratia strains begin to predominate within the soil. Whilst the interactions between S. entomophila and grass grub larvae are well studied, less information is known on the interactions between plasmid-bearing and plasmid-free strains, particularly the potential impact of these interactions upon the efficacy of an applied biopesticide. Using a range of constructed strains with antibiotic tags, in vitro (broth culture) and in vivo (soil and larvae) experiments were conducted using inoculants comprised of differing ratios of isogenic pathogenic and non-pathogenic Serratia strains, enabling the relative growth of pADAP+ and pADAP- strains under competition conditions to be assessed. In nutrient-rich, the non-pathogenic pADAP- strain outgrew the pathogenic pADAP+ strain by day 3 when inoculated in equal quantities, and by day 5 when applied as the minority inoculant, however, there was an overall gradual decline in the number of viable bacteria for both strains over a 7-day period. Similar results were obtained in additional experiments using the same strains and continuous broth cultures re-inoculated at 24-hour intervals, although in these cultures, the viable cell count did not diminish over the 7-day period. When the same ratios were assessed in soil microcosms with limited available nutrients, the strains remained relatively stable over a 2-month period. Additionally, in vivo grass grub co-infections assays using the same ratios of tagged Serratia strains revealed similar results to those observed in the soil, but there was also evidence of horizontal transfer of pADAP from the pathogenic to the non-pathogenic strain within the larval gut after a period of 4 days. Whilst the influence of competition is more apparent in broth cultures than within the soil or larvae, further testing is required to determine whether this competition between pathogenic and non-pathogenic Serratia strains has any influence on efficacy and disease progression, and how this may impact on the ability of S. entomophila to cause amber disease within grass grub larvae when applied as a biopesticide.

Keywords: biological control, entomopathogen, microbial ecology, New Zealand

Procedia PDF Downloads 144
19851 Quality of So-Called Organic Fertilizers in Vietnam's Market

Authors: Hoang Thi Quynh, Shima Kazuto

Abstract:

Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam.

Keywords: inorganic N, mineralization, N efficiency, so-called organic fertilizers, Vietnam’s market

Procedia PDF Downloads 166
19850 Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation

Authors: Sitarrine Thongpussawal, Hui Shao, Clark Gantzer

Abstract:

Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water.

Keywords: Erosion, Modeling, Terraces, SWAT

Procedia PDF Downloads 186
19849 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas

Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang

Abstract:

An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.

Keywords: axial capacity, cyclic loading, pile ageing, shallow gas

Procedia PDF Downloads 325
19848 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Deformation Limitations

Authors: Khaled R. Khater

Abstract:

This paper fits in soil-structure interaction division. Its theme is soil retaining structures. Hence, the cantilever secant-pile wall imposed itself, focusing on the capping beam. Four research questions are prompted and beg an answer. How to calculate the forces that control capping beam design? What is the statical system of ‘capping beam-secant pile’ as one unit? Is it possible to design it to satisfy pre-specific lateral deformation? Is it possible to suggest permissible lateral deformation limits? Briefly, pile head displacements induced by Plaxis-2D are converted to forces needed for STAAD-Pro 3D models. Those models are constructed based on the proposed structural system. This is the paper’s idea and methodology. Parametric study performed considered three sand densities, one pile rigidity, and two excavation depths, i.e., 3.0 m and 5.0 m. The research questions are satisfactorily answered. This paper could be a first step towards standardizing analysis, design, and lateral deformations checks.

Keywords: capping beam, secant pile, numerical, design aids, sandy soil

Procedia PDF Downloads 94
19847 Effect of Boundary Retaining Walls Properties on the Raft Foundations Behaviour

Authors: Mohamed Hussein

Abstract:

This paper studies the effect of boundary retaining walls properties on the behavior of the raft foundation. Commercial software program Sap2000 was used in this study. The soil was presented as continuous media (follows the Winkler assumption). Shell elements were employed to model the raft plate. A parametric study has been carried out to examine the effect of boundary retaining walls properties on the behavior of raft plate. These parameters namely, height of the boundary retaining walls, thickness of the boundary retaining walls, flexural rigidity of raft plate, bearing capacity of supporting soil and the earth pressure of boundary soil. The main results which were obtained from this study are positive, negative bending moment, shear stress and deflection in raft plate, where these parameters are considered the main parameters used in design of raft foundation. It was concluded that the boundary retaining walls have a significant effect on the straining actions in raft plate.

Keywords: Sap2000, boundary retaining walls, raft foundations, Winkler model, flexural rigidity

Procedia PDF Downloads 164
19846 Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique

Authors: Chandrasekaran, Ravisankar N. Harikrishnan, Rajalakshmi, K. K. Satapathy M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported.

Keywords: soil, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 321
19845 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 220
19844 Review in Role of Geotextile on Soil Improvement

Authors: Sandra Ghavam Shirazi, Mohsen Ramezan Shirazi, Mohammadreza Golhashem

Abstract:

Nowadays by development of construction in modern world new techniques are introduced to civil engineering. As for geotechnical problems and demands of soil improvement, engineers are searching for decisive methods to ensure the safety of projects. As a popular material Geotextiles are used in almost every aspect of civil engineering. There is a vast variety of geotextiles and each kind has their own unique characteristics therefor to select the proper geotextile for a specific project their properties must be carefully examined. This review gathers and evaluates different parameters of geotextiles that are used in geotechnical field.

Keywords: geotextile, soft soils, fabric, stabilization, fiber

Procedia PDF Downloads 389
19843 Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples

Authors: Iraj Rezaei, Kamal Al Din Niknami

Abstract:

Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part.

Keywords: prehistory, multi-elemental analysis, Tapeh Zagheh, XRF

Procedia PDF Downloads 82
19842 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 275
19841 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 413
19840 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines

Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto

Abstract:

Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure   accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.

Keywords: aerial image, landcover, LiDAR, soil fertility degradation

Procedia PDF Downloads 241
19839 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)

Authors: Sharifullah Ahmed

Abstract:

Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.

Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 78
19838 Environmental Impact Assessment of OMI Irrigation Scheme, Nigeria

Authors: Olumuyiwa I. Ojo, Kola Amao, Josiah A. Adeyemo, Fred A. O. Otieno

Abstract:

A study was carried out to assess the environmental impact of Kampe (Omi) irrigation scheme with respect to public health hazards, the rising water table, salinity and alkalinity problems on the project site. A structured questionnaire was used as the main tool to gather information on the effect of the irrigation project on the various communities around the project site. The different sections of the questionnaire enabled the gathering of information ranging from general to more specific information. The results obtained from the study showed that the two effects are obvious: the 'positive effects' which include increasing the socioeconomic development of the entire communities, resulting in an increase in employment opportunities and better lifestyle and the 'negative effects' in which malaria (100% occurrence) and schistosomiasis (66.7%) were found to be active diseases caused by irrigation activities. Increase in height of water table and salinity is eminent in the irrigation site unless adequate drainage is provided. The collection and experimental analyses of representation soil and water samples from each scheme were used to assess the current status of each receptor. Results obtained indicate the absence of soil with sodium adsorption ration (SAR) values ranging from 3.0 to 3.89, exchangeable sodium percentage (ESP) ranged from 3.8% to 5.5% while pH values ranged from 6.60 to 7.00. Drainage facilities of the project site are inadequate, therefore making it difficult to leach the soil and flood history is occasional.

Keywords: irrigation, impact, soil analysis, Nigeria

Procedia PDF Downloads 277
19837 Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System

Authors: Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns

Abstract:

Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system.

Keywords: bio-stimulants, soil microbial enzymes, synthetic agrochemicals, tillage

Procedia PDF Downloads 64
19836 Intelligent Irrigation Control System Using Wireless Sensors and Android Application

Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad

Abstract:

Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed.  The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.

Keywords: android application, Bluetooth, wireless sensors, irrigation, temperature, soil pH

Procedia PDF Downloads 366
19835 The Influence of the Soil in the Vegetation of the Luki Biosphere Reserve in the Democratic Republic of Congo

Authors: Sarah Okende

Abstract:

It is universally recognized that the forests of the Congo Basin remain a common good and a complex ecosystem, and insufficiently known. Historically and throughout the world, forests have been valued for the multiple products and benefits they provide. In addition to their major role in the conservation of global biodiversity and in the fight against climate change, these forests also have an essential role in the regional and global ecology. This is particularly the case of the Luki Biosphere Reserve, a highly diversified evergreen Guinean-Congolese rainforest. Despite the efforts of sustainable management of the said reserve, the understanding of the place occupied by the soil under the influence of the latter does not seem to be an interesting subject for the general public or even scientists. The Luki biosphere reserve is located in the west of the DRC, more precisely in the south-east of Mayombe Congolais, in the province of Bas-Congo. The vegetation of the Luki Biosphere Reserve is very heterogeneous and diversified. It ranges from grassy formations to semi-evergreen dense humid forests, passing through edaphic formations on hydromorphic soils (aquatic and semi-aquatic vegetation; messicole and segetal vegetation; gascaricole vegetation; young secondary forests with Musanga cercropioides, Xylopia aethiopica, Corynanthe paniculata; mature secondary forests with Terminalia superba and Hymenostegia floribunda; primary forest with Prioria balsamifera; climax forests with Gilbertiodendron dewevrei, and Gilletiodendron kisantuense). Field observations and reading of previous and up-to-date work carried out in the Luki biosphere reserve are the methodological approaches for this study, the aim of which is to show the impact of soil types in determining the varieties of vegetation. The results obtained prove that the four different types of soil present (purplish red soils, developing on amphibolites; red soils, developed on gneisses; yellow soils occurring on gneisses and quartzites; and alluvial soils, developed on recent alluvium) have a major influence apart from other environmental factors on the determination of different facies of the vegetation of the Luki Biosphere Reserve. In conclusion, the Luki Biosphere Reserve is characterized by a wide variety of biotopes determined by the nature of the soil, the relief, the microclimates, the action of man, or the hydrography. Overall management (soil, biodiversity) in the Luki Biosphere Reserve is important for maintaining the ecological balance.

Keywords: soil, biodiversity, forest, Luki, rainforest

Procedia PDF Downloads 68
19834 Fire Effects on Soil Properties of Meshchera Plain, Russia

Authors: Anna Tsibart, Timur Koshovskii

Abstract:

The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started.

Keywords: wildfires, peat soils, organic matter, Meshchera plain

Procedia PDF Downloads 643
19833 Field Application of Reduced Crude Conversion Spent Lime

Authors: Brian H. Marsh, John H. Grove

Abstract:

Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime.

Keywords: soil acidity, corn, soybean, liming materials

Procedia PDF Downloads 345
19832 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 82
19831 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.

Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW

Procedia PDF Downloads 174
19830 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 101
19829 Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test

Authors: Reza Ziaie Moayed, Seyed Abdolhassan Naeini, Peyman Nouri, Hamed Yekehdehghan

Abstract:

The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test.

Keywords: liquidity index, plasticity index, shear strength, unsaturated soil

Procedia PDF Downloads 116
19828 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study

Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem

Abstract:

A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.

Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement

Procedia PDF Downloads 331
19827 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection

Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh

Abstract:

As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.

Keywords: microbes, inoculants, fertilization, soil health, conventional.

Procedia PDF Downloads 66
19826 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 127
19825 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 119