Search results for: online data collection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27481

Search results for: online data collection

26401 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 212
26400 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 432
26399 Motivation in Online Instruction

Authors: David Whitehouse

Abstract:

Some of the strengths of online teaching include flexibility, creativity, and comprehensiveness. A challenge can be motivation. How can an instructor repeating the same lessons over and over, day in and day out, year after year, maintain motivation? Enthusiasm? Does motivating the student and creating enthusiasm in class build the same things inside the instructor? The answers lie in the adoption of what I label EUQ—The Empathy and Understanding Quotient. In the online environment, students who are adults have many demands on their time: civilian careers, families (spouse, children, older parents), and sometimes even military service. Empathetic responses on the part of the instructor will lead to open and honest communication on the part of the student, which will lead to understanding on the part of the instructor and a rise in motivation in both parties. Understanding the demands can inform an instructor’s relationship with the student throughout the temporal parameters of classwork. In practicing EUQ, instructors can build motivation in their students and find internal motivation in an enhanced classroom dynamic. The presentation will look at what motivates a student to accomplish more than the minimum required and how that can lead to excellent results for an instructor’s own motivation. Through direct experience of having students give high marks on post-class surveys and via direct messaging, the presentation will focus on how applying EUQ in granting extra time, searching for intent while grading, communicating with students via Quick Notes, responses in Forums, comments in Assignments, and comments in grading areas - - - how applying these things infuses enthusiasm and energy in the instructor which drive creativity in teaching. Three primary ways of communicating with students will be given as examples. The positive response and negative response each for a Forum, an Assignment, and a Message will be explored. If there is time, participants will be invited to craft their own EUQ responses in a role playing exercise involving two common classroom scenarios—late work and plagiarism.

Keywords: education, instruction, motivation, online, teaching

Procedia PDF Downloads 173
26398 Impact of ICT on Efficient Services Providing to Users by LIPs in NCR India

Authors: Mani Gupta

Abstract:

This study deals with question: i) Whether ICT plays a positive role in improvement of efficiency of LIPs in terms of providing efficient services to the Users in LICs? and ii) Role of finance in terms of required technological logistics and infrastructure for usage of ICT based services to comfort in accessing databases by Users in LICs. This is based on primary data which are collected from various libraries and Information Centers of NCR Delhi. The survey conducted during December 15 and 31, 2010 on 496 respondents across 96 libraries and information centers in NCR Delhi through electronic data collection method. There is positive and emphatic relationship between ICT and its effect on improving the level of efficient services providing by LIPs in LICs in NCR Delhi. This is divided into 6 sub-headings and finally the outcomes.

Keywords: modern globalization, linear correlation, efficient service, internet revolution, logistics

Procedia PDF Downloads 359
26397 Doing Cause-and-Effect Analysis Using an Innovative Chat-Based Focus Group Method

Authors: Timothy Whitehill

Abstract:

This paper presents an innovative chat-based focus group method for collecting qualitative data to construct a cause-and-effect analysis in business research. This method was developed in response to the research and data collection challenges faced by the Covid-19 outbreak in the United Kingdom during 2020-21. This paper discusses the methodological approaches and builds a contemporary argument for its effectiveness in exploring cause-and-effect relationships in the context of focus group research, systems thinking and problem structuring methods. The pilot for this method was conducted between October 2020 and March 2021 and collected more than 7,000 words of chat-based data which was used to construct a consensus drawn cause-and-effect analysis. This method was developed in support of an ongoing Doctorate in Business Administration (DBA) thesis, which is using Design Science Research methodology to operationalize organisational resilience in UK construction sector firms.

Keywords: cause-and-effect analysis, focus group research, problem structuring methods, qualitative research, systems thinking

Procedia PDF Downloads 226
26396 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment

Authors: P. L. Cheng, I. N. Umar

Abstract:

Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.

Keywords: e-learning, learning management system, online forum, social network analysis

Procedia PDF Downloads 392
26395 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway

Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett

Abstract:

Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.

Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery

Procedia PDF Downloads 193
26394 The Implications of Technological Advancements on the Constitutional Principles of Contract Law

Authors: Laura Çami (Vorpsi), Xhon Skënderi

Abstract:

In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.

Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract

Procedia PDF Downloads 156
26393 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 430
26392 Investigation of Various Variabilities of Attitudes toward Teaching as a Profession Levels of Physical Education and Sports School Students

Authors: Turan Cetinkaya, Abdurrahman Kırtepe

Abstract:

The aim of this study is to determine the relation of the level attitudes toward teaching as a profession to various variables of the students in physical education and sports departments. 277 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participated to the research. Personal information tool and teaching profession scale consisting 34 items were used as data collection tool in the research. Distribution, frequency, t test and anova test were used in comparison of the related data. As a result of statistical analysis, attitudes toward teaching as a profession levels do not differ according to gender, but significant differences were detected in the exercise regularly and department.

Keywords: teaching profession, attitude, physical education and sports students, university students

Procedia PDF Downloads 287
26391 Effect of Foot Posture and Fatigue on Static Balance and Electromyographic Activity of Selected Lower Limb Muscles in School Children Aged 12 to 14 Years

Authors: Riza Adriyani, Tommy Apriantono, Suprijanto

Abstract:

Objective: Several studies have revealed that flatfoot posture has some effect on altered lower limb muscle function, in comparison to normal foot posture. There were still limited studies to examine the effect of fatigue on flatfoot posture in children. Therefore, this study was aimed to find out jumping fatiguing effect on static balance and to compare lower limb muscle function between flatfoot and normal foot in school children. Methods: Thirty junior high school children aged 12 to 14 years took part in this study. Of these all children, 15 had the normal foot (8 males and 7 females) and 15 had flatfoot (6 males and 9 females). Foot posture was classified based on an arch index of the footprint by a foot scanner which calculated the data using AUTOCAD 2013 software. Surface electromyography (EMG) activity was recorded from tibialis anterior, gastrocnemius medialis, and peroneus longus muscles while those participants were standing on one leg barefoot with opened eyes. All participants completed the entire protocol (pre-fatigue data collection, fatigue protocol, and post fatigue data collection) in a single session. Static balance and electromyographic data were collected before and after a functional fatigue protocol. Results: School children with normal foot had arch index 0.25±0.01 whereas those with flatfoot had 0.36±0.01. In fact, there were no significant differences for anthropometric characteristics between children with flatfoot and normal foot. This statistical analysis showed that fatigue could influence static balance in flatfoot school children (p < 0.05), but not in normal foot school children. Based on electromyographic data, the statistical analysis showed that there were significant differences (p < 0.05) of the decreased median frequency on tibialis anterior in flatfoot compared to normal foot school children after fatigue. However, there were no significant differences on the median frequency of gastrocnemius medialis and peroneus longus between both groups. After fatigue, median frequency timing was significantly different (p < 0.05) on tibialis anterior in flatfoot compared to normal foot children and tended to appear earlier on tibialis anterior, gastrocnemius medialis and peroneus longus (at 7s, 8s, 9s) in flatfoot compared to normal foot (at 15s, 11s , 12s). Conclusion: Fatigue influenced static balance and tended to appear earlier on selected lower limb muscles while performing static balance in flatfoot school children. After fatigue, tremor (median frequency decreased) showed more significant differences on tibialis anterior in flatfoot rather than in normal foot school children.

Keywords: fatigue, foot postures, median frequency, static balance

Procedia PDF Downloads 509
26390 The Intention to Use E-Money Transaction: The Moderating Effect of Security in Conceptual Frammework

Authors: Husnil Khatimah, Fairol Halim

Abstract:

This research examines the moderating impact of security on intention to use e-money that adapted from some variables of the TAM (Technology Acceptance Model) and TPB (Theory of Planned Behavior). This study will use security as moderating variable and finds these relationship depends on customer intention to use e-money as payment tools. The conceptual framework of e-money transactions was reviewed to understand behavioral intention of consumers from perceived usefulness, perceived ease of use, perceived behavioral control and security. Quantitative method will be utilized as sources of data collection. A total of one thousand respondents will be selected using quota sampling method in Medan, Indonesia. Descriptive analysis and Multiple Regression analysis will be conducted to analyze the data. The article ended with suggestion for future studies.

Keywords: e-money transaction, TAM & TPB, moderating variable, behavioral intention, conceptual paper

Procedia PDF Downloads 458
26389 The Use of Online Courses as a Tool for Teaching in Education for Youth and Adults

Authors: Elineuda Do Socorro Santos Picanço Sousa, Ana Kerlly Souza da Costa

Abstract:

This paper presents the analysis of the information society as a plural, inclusive and participatory society, where it is necessary to give all citizens, especially young people, the right skills in order to develop skills so that they can understand and use information through of contemporary technologies; well as carry out a critical analysis, using and producing information and all sorts of messages and / or informational language codes. This conviction inspired this article, whose aim is to present current trends in the use of technology in distance education applied as an alternative and / or supplement to classroom teaching for Youth and Adults, concepts and actions, seeking to contribute to its development in the state of Amapá and specifically, the Center for Professional of Amapá Teaching Professor Josinete Oliveira Barroso - CEPAJOB.

Keywords: youth and adults education, Ead. Professional Education, online courses, CEPAJOB

Procedia PDF Downloads 646
26388 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry

Authors: Alina Petronela Negrea, Valentin Cojanu

Abstract:

The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.

Keywords: automotive industry, entrepreneurship, innovation, Romania

Procedia PDF Downloads 553
26387 Gender Bias and the Role It Plays in Student Evaluation of Instructors

Authors: B. Garfolo, L. Kelpsh, R. Roak, R. Kuck

Abstract:

Often, student ratings of instructors play a significant role in the career path of an instructor in higher education. So then, how does a student view the effectiveness of instructor teaching? This question has been address by literally thousands of studies found in the literature. Yet, why does this question still persist? A literature review reveals that while it is true that student evaluations of instructors can be biased, there is still a considerable amount of work that needs to be done in understanding why. As student evaluations of instructors can be used in a variety of settings (formative or summative) it is critical to understand the nature of the bias. The authors believe that not only is some bias possible in student evaluations, it should be expected for the simple reason that a student evaluation is a human activity and as such, relies upon perception and interpersonal judgment. As such, student ratings are affected by the same factors that can potentially affect any rater’s judgment, such as stereotypes based on gender, culture, race, etc. Previous study findings suggest that student evaluations of teacher effectiveness differ between male and female raters. However, even though studies have shown that instructor gender does play an important role in influencing student ratings, the exact nature and extent of that role remains the subject of debate. Researchers, in their attempt to define good teaching, have looked for differences in student evaluations based on a variety of characteristics such as course type, class size, ability level of the student and grading practices in addition to instructor and student characteristics (gender, age, etc.) with inconsistent results. If a student evaluation represents more than an instructor’s teaching ability, for example, a physical characteristic such as gender, then this information must be taken into account if the evaluation is to have meaning with respect to instructor assessment. While the authors concede that it is difficult or nearly impossible to separate gender from student perception of teaching practices in person, it is, however, possible to shield an instructor’s gender identity with respect to an online teaching experience. The online teaching modality presents itself as a unique opportunity to experiment directly with gender identity. The analysis of the differences of online behavior of individuals when they perceive that they are interacting with a male or female could provide a wealth of data on how gender influences student perceptions of teaching effectiveness. Given the importance of the role student ratings play in hiring, retention, promotion, tenure, and salary deliberations in academic careers, this question warrants further attention as it is important to be aware of possible bias in student evaluations if they are to be used at all with respect to any academic considerations. For experimental purposes, the author’s constructed and online class where each instructors operate under two different gender identities. In this study, each instructor taught multiple sections of the same class using both a male identity and a female identity. The study examined student evaluations of teaching based on certain student and instructor characteristics in order to determine if and where male and female students might differ in their ratings of instructors based on instructor gender. Additionally, the authors examined if there are differences between undergraduate and graduate students' ratings with respect to the experimental criteria.

Keywords: gender bias, ethics, student evaluations, student perceptions, online instruction

Procedia PDF Downloads 271
26386 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 365
26385 Assessment of Factors Influencing Adoption of Agroforestry Technologies in Halaba Special Woreda, Southern Ethiopia

Authors: Mihretu Erjabo

Abstract:

Halaba special district is characterized by drought, soil erosion, high population pressure, poor livestock production, lack of feed for livestock, very deep water table, very low productivity of crops and food insufficiency. In order to address these problems, the woreda agricultural development office along with other management practices such as soil physical conservation measures agroforestry was introduced decades ago as a means to alleviate the problem. However, the level of agroforestry adoption remains low. Objective of this study was to identify the factors that influence adoption of agroforestry technologies by farmers in the district. Random sampling was employed to select two kebele administrations and respondents. Data collection was conducted by rural household questionnaire survey, participatory rural appraisal, questionnaires for local and woreda extension staff, secondary data resources and field observation. A sample of 12 key informants, 6 extension staffs, and 182 households, were used in the data collection. Chi square test used to determine significant relationships between adoption of agroforestry and 15 selected variables. Out of which eleven were found to be significant to affect farmers’ adoptiveness. These were frequency of visits of farmers (13.39%), participation in training (11.49%), farmers’ attitude towards agroforestry practices (10.61%), frequency of visits of extensionists (10.38%), participation in extension meeting (10.34%), participation in field day (10.28%), land holding size (9.29%), level of literacy (8.78%), awareness about the importance of agroforestry technology packages (7.06%), time taken from their residence to nearest extension (5.04%) and gender of respondents (3.34%). This study also identified various factors that result in low adoption rates of agroforestry including fear of competition, seedling, rainfall and labour shortage, free grazing, financial problem, expecting trees as soil degrader and long span of trees and lack of need ranking. To improve farmers’ adoption, the factors identified should be well addressed by launching a series and recurrent outreach extension program appropriate and suitable to farmers need.

Keywords: farmers attitude, farmers participation, soil degradation, technology packages

Procedia PDF Downloads 162
26384 Forensic Investigation: The Impact of Biometric-Based Solution in Combatting Mobile Fraud

Authors: Mokopane Charles Marakalala

Abstract:

Research shows that mobile fraud has grown exponentially in South Africa during the lockdown caused by the COVID-19 pandemic. According to the South African Banking Risk Information Centre (SABRIC), fraudulent online banking and transactions resulted in a sharp increase in cybercrime since the beginning of the lockdown, resulting in a huge loss to the banking industry in South Africa. While the Financial Intelligence Centre Act, 38 of 2001, regulate financial transactions, it is evident that criminals are making use of technology to their advantage. Money-laundering ranks among the major crimes, not only in South Africa but worldwide. This paper focuses on the impact of biometric-based solutions in combatting mobile fraud at the South African Risk Information. SABRIC had the challenges of a successful mobile fraud; cybercriminals could hijack a mobile device and use it to gain access to sensitive personal data and accounts. Cybercriminals are constantly looting the depths of cyberspace in search of victims to attack. Millions of people worldwide use online banking to do their regular bank-related transactions quickly and conveniently. This was supported by the SABRIC, who regularly highlighted incidents of mobile fraud, corruption, and maladministration in SABRIC, resulting in a lack of secure their banking online; they are vulnerable to falling prey to fraud scams such as mobile fraud. Criminals have made use of digital platforms since the development of technology. In 2017, 13 438 instances involving banking apps, internet banking, and mobile banking caused the sector to suffer gross losses of more than R250,000,000. The final three parties are forced to point fingers at one another while the fraudster makes off with the money. A non-probability sampling (purposive sampling) was used in selecting these participants. These included telephone calls and virtual interviews. The results indicate that there is a relationship between remote online banking and the increase in money-laundering as the system allows transactions to take place with limited verification processes. This paper highlights the significance of considering the development of prevention mechanisms, capacity development, and strategies for both financial institutions as well as law enforcement agencies in South Africa to reduce crime such as money-laundering. The researcher recommends that strategies to increase awareness for bank staff must be harnessed through the provision of requisite training and to be provided adequate training.

Keywords: biometric-based solution, investigation, cybercrime, forensic investigation, fraud, combatting

Procedia PDF Downloads 108
26383 Behavioral Experiments of Small Societies in Social Media: Facebook Expressions of Anchored Relationships

Authors: Nuran Öze

Abstract:

Communities and societies have been changing towards computer mediated communication. This paper explores online and offline identities and how relationships are formed and negotiated within internet environments which offer opportunities for people who know each other offline and move into relationships online. The expectations and norms of behavior within everyday life cause people to be embodied self. According to the age categories of Turkish Cypriots, their measurements of attitudes in Facebook will be investigated. Face-to-face field research and semi-structured interview methods are used in the study. Face-to-face interview has been done with Turkish Cypriots who are using Facebook already. According to the study, in constructing a linkage between real and virtual identities mostly affected from societal relations serves as a societal grooming tool for Turkish Cypriots.

Keywords: facebook, identity, social media, virtual reality

Procedia PDF Downloads 304
26382 Need for Privacy in the Technological Era: An Analysis in the Indian Perspective

Authors: Amrashaa Singh

Abstract:

In the digital age and the large cyberspace, Data Protection and Privacy have become major issues in this technological era. There was a time when social media and online shopping websites were treated as a blessing for the people. But now the tables have turned, and the people have started to look at them with suspicion. They are getting aware of the privacy implications, and they do not feel as safe as they used to initially. When Edward Snowden informed the world about the snooping United States Security Agencies had been doing, that is when the picture became clear for the people. After the Cambridge Analytica case where the data of Facebook users were stored without their consent, the doubts arose in the minds of people about how safe they actually are. In India, the case of spyware Pegasus also raised a lot of concerns. It was used to snoop on a lot of human right activists and lawyers and the company which invented the spyware claims that it only sells it to the government. The paper will be dealing with the privacy concerns in the Indian perspective with an analytical methodology. The Supreme Court here had recently declared a right to privacy a Fundamental Right under Article 21 of the Constitution of India. Further, the Government is also working on the Data Protection Bill. The point to note is that India is still a developing country, and with the bill, the government aims at data localization. But there are doubts in the minds of many people that the Government would actually be snooping on the data of the individuals. It looks more like an attempt to curb dissenters ‘lawfully’. The focus of the paper would be on these issues in India in light of the European Union (EU) General Data Protection Regulation (GDPR). The Indian Data Protection Bill is also said to be loosely based on EU GDPR. But how helpful would these laws actually be is another concern since the economic and social conditions in both countries are very different? The paper aims at discussing these concerns, how good or bad is the intention of the government behind the bill, and how the nations can act together and draft common regulations so that there is some uniformity in the laws and their application.

Keywords: Article 21, data protection, dissent, fundamental right, India, privacy

Procedia PDF Downloads 115
26381 Men Act, Women Are Acted Upon: Morphosyntactic Framing of the Sexual Intercourse in Online Pornography Titles

Authors: Aleksandra Tomic

Abstract:

According to reliable sources, 4% of all websites is devoted to pornographic material, yet these estimates are often reported to be much higher. The largest internet pornography streaming website reports 21.2 billion visits in 2015 only. Considering the ubiquity of online pornography and the frequency of use, it is necessary to examine its potential influence on the construal of the sexual act and the roles of participants. Apart from the verbal and physical interactions in the pornographic movies themselves, the language in the titles of movies has the power to frame the sexual intercourse. In this study, Critical Discourse Analysis and corpus linguistics approaches will be used to examine the way the sexual intercourse and the roles of the participants are ideologically construed and perpetuated in the Internet pornography discourse. To this end, the study will explore the association between the specific morphosyntactic aspects of the references to performers of both genders, the person and the thematic role, and the gender of referred performer in the corpus of online pornographic movie titles. Distinctive collexeme analysis will be conducted to uncover possible associations between for gender of the performer denoted by the linguistic expression, and the person and thematic role assigned to it in the titles of online pornography movies. Initial results of the chi-square procedure performed on a sample of 295 online pornography movie titles on the largest pornography streaming website ‘Pornhub’ yielded significant results. The use of the three person categories was not equally distributed between genders, X2 (2, N = 106) = 32.52, p < 0.001, with female performers being referred to in the third person in 71.7% of the instances, and speaking in the first person 20.8% of the time, whereas male performers spoke in the first person 68% of the time, and were referred to in the third person in 17% of the instances. Moreover, there was a gender disparity in the assignment of thematic roles, with linguistic expressions for women being assigned the Patient role and men the Agent role in 58.8% of the cases, whereas the roles were reversed in 41.2% of the instances, X2 (1, N = 262) = 8.07633, p < 0.005. The results are discussed in terms of the ideologies surrounding female and male sexuality in the pornography discourse. Potential patterns of power imbalance, objectification, and discrimination are highlighted. Finally, the evidence from psycholinguistic studies on the influence of the language structure on event construal is related to the results of the study.

Keywords: corpus linguistics, gender studies, pornography, thematic roles

Procedia PDF Downloads 193
26380 Code-Switching among Local UCSI Stem and N-Stem Undergraduates during Knowledge Sharing

Authors: Adeela Abu Bakar, Minder Kaur, Parthaman Singh

Abstract:

In the Malaysian education system, a formal setting of English language learning takes place in a content-based classroom (CBC). Until recently, there is less study in Malaysia, which researched the effects of code-switching (CS) behaviour towards the students’ knowledge sharing (KS) with their peers. The aim of this study is to investigate the frequency, reasons, and effect that CS, from the English language to Bahasa Melayu, has among local STEM and N-STEM undergraduates towards KS in a content-based classroom. The study implies a mixed-method research design with questionnaire and interviews as the instruments. The data is collected through distribution of questionnaires and interviews with the undergraduates. The quantitative data is analysed using SPSS in simple frequencies and percentages, whereas qualitative data involves organizing the data into themes, followed by analysis. Findings found that N-STEM undergraduates code-switch more as compared to STEM undergraduates. In addition to that, both the STEM and N-STEM undergraduates agree that CS acts as a catalyst towards KS in a content-based classroom. However, they also acknowledge that excess use of CS can be a hindrance towards KS. The findings of the study can benefit STEM and N-STEM undergraduates, education policymakers, language teachers, university educators, and students with significant insights into the role of CS towards KS in a content-based classroom. Some of the recommendations that can be applied for future studies are that the number of participants can be increased, an observation to be included for the data collection.

Keywords: switching, content-based classroom, content and language integrated learning, knowledge sharing, STEM and N-STEM undergraduates

Procedia PDF Downloads 139
26379 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle

Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye

Abstract:

Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.

Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis

Procedia PDF Downloads 209
26378 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 112
26377 The Developing of Teaching Materials Online for Students in Thailand

Authors: Pitimanus Bunlue

Abstract:

The objectives of this study were to identify the unique characteristics of Salaya Old market, Phutthamonthon, Nakhon Pathom and develop the effective video media to promote the homeland awareness among local people and the characteristic features of this community were collectively summarized based on historical data, community observation, and people’s interview. The acquired data were used to develop a media describing prominent features of the community. The quality of the media was later assessed by interviewing local people in the old market in terms of content accuracy, video, and narration qualities, and sense of homeland awareness after watching the video. The result shows a 6-minute video media containing historical data and outstanding features of this community was developed. Based on the interview, the content accuracy was good. The picture quality and the narration were very good. Most people developed a sense of homeland awareness after watching the video also as well.

Keywords: audio-visual, creating homeland awareness, Phutthamonthon Nakhon Pathom, research and development

Procedia PDF Downloads 296
26376 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation

Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim

Abstract:

This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.

Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement

Procedia PDF Downloads 516
26375 Amazon and Its AI Features

Authors: Leen Sulaimani, Maryam Hafiz, Naba Ali, Roba Alsharif

Abstract:

One of Amazon’s most crucial online systems is artificial intelligence. Amazon would not have a worldwide successful online store, an easy and secure way of payment, and other services if it weren’t for artificial intelligence and machine learning. Amazon uses AI to expand its operations and enhance them by upgrading the website daily; having a strong base of artificial intelligence in a worldwide successful business can improve marketing, decision-making, feedback, and more qualities. Aiming to have a rational AI system in one’s business should be the start of any process; that is why Amazon is fortunate that they keep taking care of the base of their business by using modern artificial intelligence, making sure that it is stable, reaching their organizational goals, and will continue to thrive more each and every day. Artificial intelligence is used daily in our current world and is still being amplified more each day to reach consumer satisfaction and company short and long-term goals.

Keywords: artificial intelligence, Amazon, business, customer, decision making

Procedia PDF Downloads 114
26374 Studying in the Outback: A Hermeneutic Phenomenological Study of the Lived Experience of Women in Regional, Rural and Remote Areas Studying Nursing Online

Authors: Keden Montgomery, Kathie Ardzejewska, Alison Casey, Rosemarie Hogan

Abstract:

Research was undertaken to explore the question “what is known about the experiences of regional, rural and remote Australian women undertaking a Bachelor of Nursing program delivered online?”. The findings will support future research aimed at improving the retention and completion rates of women studying nursing in regional, rural and remote areas.  There is a critical shortage of nurses working in regional, rural and remote (RRR) Australia. It is well supported that this shortage of nurses is most likely to be addressed by nursing students who are completing their studies in RRR areas. Despite this, students from RRR Australia remain an equity group and experience poorer outcomes than their metropolitan counterparts. Completion rates for RRR students who enrol in tertiary education courses are much less than students from metropolitan areas. In addition to this, RRR students are less likely than students from metropolitan areas to gain a tertiary level qualification at all, and even less likely to gain a Bachelor level degree which is required for Registered Nurses. Supporting students to remain in regional, rural and remote areas while they study reduces the need for students to relocate to metropolitan areas and to continue living and working in RRR areas after graduation. This research holds implications for workforce shortages internationally.

Keywords: nurse education, online education, regional, rural, remote, workforce

Procedia PDF Downloads 92
26373 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 160
26372 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 231