Search results for: features engineering methods for forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20922

Search results for: features engineering methods for forecasting

19842 The 'Ineffectiveness' of Teaching Research Methods in Moroccan Higher Education: A Qualitative Study

Authors: Ahmed Chouari

Abstract:

Although research methods has been an integral part of the curriculum in Moroccan higher education for decades, it seems that the research methods teaching pedagogy that teachers use suffers from a serious absence of a body of literature in the field. Also, the various challenges that both teachers and students of research methods face have received little interest by researchers in comparison to other fields such as applied linguistics. Therefore, the main aim of this study is to remedy to this situation by exploring one of the major issues in teaching research methods – that is, the phenomenon of students’ dissatisfaction with the research methods course in higher education in Morocco. The aim is also to understand students’ attitudes and perceptions on how to make the research methods course more effective in the future. Three qualitative research questions were used: (1) To what extent are graduate students satisfied with the pedagogies used by the teachers of the research methods course in Moroccan higher education? (2) To what extent are graduate students satisfied with the approach used in assessing research methods in Moroccan higher education? (3) What are students’ perceptions on how to make the research methods course more effective in Moroccan higher education? In this study, a qualitative content analysis was adopted to analyze students’ views and perspectives about the major factors behind their dissatisfaction with the course at the School of Arts and Humanities – University of Moulay Ismail. A semi-structured interview was used to collect data from 14 respondents from two different Master programs. The results show that there is a general consensus among the respondents about the major factors behind the ineffectiveness of the course. These factors include theory-practice gap, heavy reliance on theoretical knowledge at the expense of procedural knowledge, and ineffectiveness of some teachers. The findings also reveal that teaching research methods in Morocco requires more time, better equipment, and more competent teachers. Above all, the findings indicate that today there is an urgent need in Morocco to shift from teacher-centered approaches to learner-centered approaches in teaching the research methods course. These findings, thus, contribute to the existing literature by unraveling the factors that impede the learning process, and by suggesting a set of strategies that can make course more effective.

Keywords: competencies, learner-centered teaching, research methods, student autonomy, pedagogy

Procedia PDF Downloads 265
19841 Kocuria Keratitis: A Rare and Diagnostically Challenging Infection of the Cornea

Authors: Sarah Jacqueline Saram, Diya Baker, Jaishree Gandhewar

Abstract:

Named after the Slovakian microbiologist, Miroslav Kocur, the Kocuria spp. are an emerging cause of significant human infections. Their predilection for immunocompromised states, such as malignancy and metabolic disorders, is highlighted in the literature. The coagulase-negative, gram-positive cocci are commensals found in the skin and oropharynx of humans, and their growing presence as responsible organisms in ocular infections cannot be ignored. The severe, rapid, and unrelenting disease course associated with Kocuria keratitis is underlined in the literature. However, the clinical features are variable, which may impede making a diagnosis. Here, we describe a first account of an initial misdiagnosis due to reliance on subjective analysis features on a confocal microscope, which ultimately led to a delay in commencing the correct treatment. In documenting this, we hope to underline to clinicians the difficulties in recognising a Kocuria Rhizophilia keratitis due to its similar clinical presentation to an Acanthamoeba Keratitis, thus emphasizing the need for early investigations such as corneal scrapes to secure the correct diagnosis and prevent further harm and vision loss for the patient.

Keywords: keratitis, cornea, infection, rare, Kocuria

Procedia PDF Downloads 54
19840 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.

Authors: Georgia Pozoukidou

Abstract:

TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.

Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations

Procedia PDF Downloads 292
19839 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
19838 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents

Authors: Chothmal, Basant Agarwal

Abstract:

Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.

Keywords: feature selection methods, machine learning, NB, one-class SVM, sentiment analysis, support vector machine

Procedia PDF Downloads 517
19837 Lean Product Development and Sustainability: A Systematic Literature Review

Authors: João P. E. De Souza, Rob Dekkers

Abstract:

Whereas lean product development aims at maximising customer value whilst optimising product and process design, the question arises whether this approach includes sustainability. A systematic literature review reveals that methods associated with this conceptualisation of product development are suitable for including sustainability, but that the criteria for the triple-bottom line need to be included when using these methods; this is particularly the case for social aspects. Thus, the main finding is that not new methods should be developed, but that existing methods should be more inclusive towards all aspects of sustainability and product life-cycle thinking.

Keywords: lean product development, product life-cycle, sustainability, systematic literature review, triple bottom-line

Procedia PDF Downloads 166
19836 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 181
19835 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model

Authors: Sujay Kotwale, Ramasubba Reddy M.

Abstract:

Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.

Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost

Procedia PDF Downloads 119
19834 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
19833 Metaphorical Perceptions of Middle School Students regarding Computer Games

Authors: Ismail Celik, Ismail Sahin, Fetah Eren

Abstract:

The computer, among the most important inventions of the twentieth century, has become an increasingly important component in our everyday lives. Computer games also have become increasingly popular among people day-by-day, owing to their features based on realistic virtual environments, audio and visual features, and the roles they offer players. In the present study, the metaphors students have for computer games are investigated, as well as an effort to fill the gap in the literature. Students were asked to complete the sentence—‘Computer game is like/similar to….because….’— to determine the middle school students’ metaphorical images of the concept for ‘computer game’. The metaphors created by the students were grouped in six categories, based on the source of the metaphor. These categories were ordered as ‘computer game as a means of entertainment’, ‘computer game as a beneficial means’, ‘computer game as a basic need’, ‘computer game as a source of evil’, ‘computer game as a means of withdrawal’, and ‘computer game as a source of addiction’, according to the number of metaphors they included.

Keywords: computer game, metaphor, middle school students, virtual environments

Procedia PDF Downloads 535
19832 The Study of Flood Resilient House in Ebo-Town

Authors: Alagie Salieu Nankey

Abstract:

Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house.

Keywords: flood-resistant, slit, flood hazard zone, pile foundation

Procedia PDF Downloads 45
19831 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 73
19830 Load-Deflecting Characteristics of a Fabricated Orthodontic Wire with 50.6Ni 49.4Ti Alloy Composition

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Peerapong Tua-Ngam

Abstract:

Aims: The objectives of this study was to determine the load-deflecting characteristics of a fabricated orthodontic wire with alloy composition of 50.6% (atomic weight) Ni and 49.4% (atomic weight) Ti and to compare the results with Ormco, a commercially available pre-formed NiTi orthodontic archwire. Materials and Methods: The ingots alloys with atomic weight ratio 50.6 Ni: 49.4 Ti alloy were used in this study. Three specimens were cut to have wire dimensions of 0.016 inch x0.022 inch. For comparison, a commercially available pre-formed NiTi archwire, Ormco, with dimensions of 0.016 inch x 0.022 inch was used. Three-point bending tests were performed at the temperature 36+1 °C using a Universal Testing Machine on the newly fabricated and commercial archwires to assess the characteristics of the load-deflection curve with loading and unloading forces. The loading and unloading features at the deflection points 0.25, 0.50, 0.75. 1.0, 1.25, and 1.5 mm were compared. Descriptive statistics was used to evaluate each variables, and independent t-test at p < 0.05 was used to analyze the mean differences between the two groups. Results: The load-deflection curve of the 50.6Ni: 49.4Ti wires exhibited the characteristic features of superelasticity. The curves at the loading and unloading slope of Ormco NiTi archwire were more parallel than the newly fabricated NiTi wires. The average deflection force of the 50.6Ni: 49.4Ti wire was 304.98 g and 208.08 g for loading and unloading, respectively. Similarly, the values were 358.02 g loading and 253.98 g for unloading of Ormco NiTi archwire. The interval difference forces between each deflection points were in the range 20.40-121.38 g and 36.72-92.82 g for the loading and unloading curve of 50.6Ni: 49.4Ti wire, respectively, and 4.08-157.08 g and 14.28-90.78 g for the loading and unloading curve of commercial wire, respectively. The average deflection force of the 50.6Ni: 49.4Ti wire was less than that of Ormco NiTi archwire, which could have been due to variations in the wire dimensions. Although a greater force was required for each deflection point of loading and unloading for the 50.6Ni: 49.4Ti wire as compared to Ormco NiTi archwire, the values were still within the acceptable limits to be clinically used in orthodontic treatment. Conclusion: The 50.6Ni: 49.4Ti wires presented the characteristics of a superelastic orthodontic wire. The loading and unloading force were also suitable for orthodontic tooth movement. These results serve as a suitable foundation for further studies in the development of new orthodontic NiTi archwires.

Keywords: 50.6 ni 49.4 Ti alloy wire, load deflection curve, loading and unloading force, orthodontic

Procedia PDF Downloads 303
19829 The Use of Tourism Destination Management for Image Branding as a Preferable Choice of Foreign Policy

Authors: Mehtab Alam, Mudiarasan Kuppusamy

Abstract:

Image branding is the prominent and well-guided phenomena of managing tourism destinations. It examines the image of cities forming as brand identity. Transformation of cities into tourist destinations is obligatory for the current management practices to be used for foreign policy. The research considers the features of perception, destination accommodation, destination quality, traveler revisit, destination information system, and behavioral image for tourism destination management. Using the quantitative and qualitative research methodology, the objective is to examine and investigate the opportunities for destination branding. It investigates the features and management of tourism destinations in Abbottabad city of Pakistan through SPSS and NVivo 12 software. The prospective outlook of the results and coding reflects the significant contribution of integrated destination management for image branding, where Abbottabad has the potential to become a destination city. The positive impact of branding integrates tourism management as it is fulfilling travelers’ requirements to influence the choice of destination for innovative foreign policy.

Keywords: image branding, destination management, tourism, foreign policy, innovative

Procedia PDF Downloads 94
19828 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 152
19827 Parallel Genetic Algorithms Clustering for Handling Recruitment Problem

Authors: Walid Moudani, Ahmad Shahin

Abstract:

This research presents a study to handle the recruitment services system. It aims to enhance a business intelligence system by embedding data mining in its core engine and to facilitate the link between job searchers and recruiters companies. The purpose of this study is to present an intelligent management system for supporting recruitment services based on data mining methods. It consists to apply segmentation on the extracted job postings offered by the different recruiters. The details of the job postings are associated to a set of relevant features that are extracted from the web and which are based on critical criterion in order to define consistent clusters. Thereafter, we assign the job searchers to the best cluster while providing a ranking according to the job postings of the selected cluster. The performance of the proposed model used is analyzed, based on a real case study, with the clustered job postings dataset and classified job searchers dataset by using some metrics.

Keywords: job postings, job searchers, clustering, genetic algorithms, business intelligence

Procedia PDF Downloads 329
19826 Management of Intellectual Property Rights: Strategic Patenting

Authors: Waheed Oseni

Abstract:

This article reviews emergent global trends in intellectual property protection and identifies patenting as a strategic initiative. Recent developments in software and method of doing business patenting are fast transforming the e‐business landscape. The article discusses the emergent global regulatory framework concerning intellectual property rights and the strategic value of patenting. Important features of a corporate patenting portfolio are described. Superficially, the e‐commerce landscape appears to be dominated by dotcom start-ups or the “dotcomization” of existing brick and mortar companies. But, in reality, at its very bedrock is intellectual property (IP). In this connection, the recent avalanche of patenting of software and method‐of‐doing‐business (MDB) in the USA is a very significant development with regard to rules governing IP rights and, therefore, e‐commerce. Together with the World Trade Organization’s (WTO) IP rules, there is an emerging global regulatory framework for IP rights, an understanding of which is necessary for designing effective e‐commerce strategies.

Keywords: intellectual property, patents, methods, computer software

Procedia PDF Downloads 526
19825 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 82
19824 Cloud-Based Dynamic Routing with Feedback in Formal Methods

Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata

Abstract:

With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.

Keywords: cloud, dynamic routing, formal method, Pro-B, event-B

Procedia PDF Downloads 423
19823 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 229
19822 Cloning and Analysis of Nile Tilapia Toll-like receptors Type-3 mRNA

Authors: Abdelazeem Algammal, Reham Abouelmaatti, Xiaokun Li, Jisheng Ma, Eman Abdelnaby, Wael Elfeil

Abstract:

Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in vertebrates. However, the fish TLRs also exhibit very distinct features and a large diversity, which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Little is known about the fish immune system structure. Our work was aimed to identify and clone the Nile tilapiaTLR-3 as a model of freshwater fish species; we cloned the full-length cDNA sequence of Nile tilapia (Oreochromis niloticus) TLR-3 and according to our knowledge, it is the first report illustrating tilapia TLR-3. The complete cDNA sequence of Nile tilapia TLR-3 was 2736 pair base and it encodes a polypeptide of 912 amino acids. Analysis of the deduced amino acid sequence indicated that Nile tilapia TLR-3 has typical structural features and main components of proteins belonging to the TLR family. Our results illustrate a complete and functional Nile tilapia TLR-3 and it is considered an ortholog of the other vertebrate’s receptor.

Keywords: Nile tilapia, TLR-3, cloning, gene expression

Procedia PDF Downloads 151
19821 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
19820 Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria

Authors: S. D. Abdul, F. B. J. Sawa, D. Z. Andrawus, G. Dan'ilu

Abstract:

Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum.

Keywords: Sesamum indicum, stomata, trichomes, epidermal cells, taxonomy

Procedia PDF Downloads 274
19819 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle.

Keywords: fluidic thrust vectoring, rocket steering, supersonic to sonic jet interaction, TVC in aerospace vehicles

Procedia PDF Downloads 589
19818 Component Comparison of Polyaluminum Chloride Produced from Various Methods

Authors: Wen Po Cheng, Chia Yun Chung, Ruey Fang Yu, Chao Feng Chen

Abstract:

The main objective of this research was to study the differences of aluminum hydrolytic products between two PACl preparation methods. These two methods were the acidification process of freshly formed amorphous Al(OH)3 and the conventional alkalization process of aluminum chloride solution. According to Ferron test and 27Al NMR analysis of those two PACl preparation procedures, the reaction rate constant (k) values and Al13 percentage of acid addition process at high basicity value were both lower than those values of the alkaline addition process. The results showed that the molecular structure and size distribution of the aluminum species in both preparing methods were suspected to be significantly different at high basicity value.

Keywords: polyaluminum chloride, Al13, amorphous aluminum hydroxide, Ferron test

Procedia PDF Downloads 376
19817 Studying the Role of Teachers’ Self-Acceptance in the Development of Their Self-Esteem and Efficacy Level: A Case Study Applied to 37 Teachers at the English Department, Sidi Bel Abbes, Algeria

Authors: Asmaa Baghli

Abstract:

Self-acceptance is one of the most pertinent notions that attracted the attention of many scholars. These latters believed that the sense of self-acceptance for people contributes in the emergence of their self-esteem and helps to improve their efficacy level. Simply defined, self-acceptance stands for the ability of the person to admire and accept herself and her potentials. This fact is believed to participate in the personal image creation depending on the qualities and features possessed. Hitherto, the following paper aims, first, to provide a brief and concise definition of self-acceptance, self-esteem and self-efficacy. It tries to explain the correlation between the three concepts along with its linkage to language teaching. Then, it examines teachers’ acceptance level and its influence on their classroom actions. For that purpose, the main methodology undertaken is the mixed method. That means the combination between both quantitative and qualitative research methods. The prime tools selected are a questionnaire and self-acceptance test for teachers. Finally, it suggests some techniques for developing teachers’ self-acceptance.

Keywords: competence, development, efficacy, Self-acceptance, self-esteem, teachers

Procedia PDF Downloads 141
19816 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
19815 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
19814 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
19813 Comparing the Apparent Error Rate of Gender Specifying from Human Skeletal Remains by Using Classification and Cluster Methods

Authors: Jularat Chumnaul

Abstract:

In forensic science, corpses from various homicides are different; there are both complete and incomplete, depending on causes of death or forms of homicide. For example, some corpses are cut into pieces, some are camouflaged by dumping into the river, some are buried, some are burned to destroy the evidence, and others. If the corpses are incomplete, it can lead to the difficulty of personally identifying because some tissues and bones are destroyed. To specify gender of the corpses from skeletal remains, the most precise method is DNA identification. However, this method is costly and takes longer so that other identification techniques are used instead. The first technique that is widely used is considering the features of bones. In general, an evidence from the corpses such as some pieces of bones, especially the skull and pelvis can be used to identify their gender. To use this technique, forensic scientists are required observation skills in order to classify the difference between male and female bones. Although this technique is uncomplicated, saving time and cost, and the forensic scientists can fairly accurately determine gender by using this technique (apparently an accuracy rate of 90% or more), the crucial disadvantage is there are only some positions of skeleton that can be used to specify gender such as supraorbital ridge, nuchal crest, temporal lobe, mandible, and chin. Therefore, the skeletal remains that will be used have to be complete. The other technique that is widely used for gender specifying in forensic science and archeology is skeletal measurements. The advantage of this method is it can be used in several positions in one piece of bones, and it can be used even if the bones are not complete. In this study, the classification and cluster analysis are applied to this technique, including the Kth Nearest Neighbor Classification, Classification Tree, Ward Linkage Cluster, K-mean Cluster, and Two Step Cluster. The data contains 507 particular individuals and 9 skeletal measurements (diameter measurements), and the performance of five methods are investigated by considering the apparent error rate (APER). The results from this study indicate that the Two Step Cluster and Kth Nearest Neighbor method seem to be suitable to specify gender from human skeletal remains because both yield small apparent error rate of 0.20% and 4.14%, respectively. On the other hand, the Classification Tree, Ward Linkage Cluster, and K-mean Cluster method are not appropriate since they yield large apparent error rate of 10.65%, 10.65%, and 16.37%, respectively. However, there are other ways to evaluate the performance of classification such as an estimate of the error rate using the holdout procedure or misclassification costs, and the difference methods can make the different conclusions.

Keywords: skeletal measurements, classification, cluster, apparent error rate

Procedia PDF Downloads 252