Search results for: deep Q-network (DQN)
1035 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1371034 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 1011033 An Analysis of Discourse Markers Awareness in Writing Undergraduate Thesis of English Education Student in Sebelas Maret University
Authors: Oktanika Wahyu Nurjanah, Anggun Fitriana Dewi
Abstract:
An undergraduate thesis is one of the academic writings which should fulfill some characteristics, one of them is coherency. Moreover, a coherence of a text depends on the usage of discourse markers. In other word, discourse markers take an essential role in writing. Therefore, the researchers aim to know the awareness of the discourse markers usage in writing the under-graduate thesis of an English Education student at Sebelas Maret University. This research uses a qualitative case study in order to obtain a deep analysis. The sample of this research is an under-graduate thesis of English Education student in Sebelas Maret University which chosen based on some criteria. Additionally, the researchers were guided by some literature attempted to group the discourse markers based on their functions. Afterward, the analysis was held based on it. From the analysis, it found that the awareness of discourse markers usage is moderate. The last point, the researcher suggest undergraduate students to familiarize themselves with discourse markers, especially for those who want to write thesis.Keywords: discourse markers, English education, thesis writing, undergraduate student
Procedia PDF Downloads 3631032 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan
Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam
Abstract:
A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.Keywords: water productivity, water deficit, sunflower, plant spacing
Procedia PDF Downloads 3561031 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 2301030 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1541029 Endogenous Development and Sustainable Perspectives: The Case of Traditional Communities Located around the Area of Management of Precious Wood Amazon
Authors: Débora Ramos Santiago
Abstract:
Endogenous development usually apresent a deep approach to locational aspects, considering the potential, knowledge and the workforce, as encouragement to articulate the entire productive activity of a community. In the case of communities located around the area of management of the company Precious Wood Amazon (PWA), their endogenous development is subject to the dynamic of this company, which operates a certified way, seeking alternatives to mitigate and compensate the damages caused by its activities. This article soughts to present the socio-economic and environmental challenges to promote of the endogenous development of these communities, identifying the relationship of the PWA in this process. The communities analyzed emerge with poor socioeconomic conditions, futhermore, their ecosystem characteristics differ spatially from each other, which modifies the entire production dynamics. The family agriculture was an important source of income, but needs investment and technical assistance. The participation of PWA in the promotion of the endogenous development of the communities was proved significant, because of the intense sustainable actions practice by PWA. Many are the challenges that exist in these communities, so its fundamental to elaborate public policies to these specific areas.Keywords: endogenous development, traditional communities, Amazon, PWA
Procedia PDF Downloads 3601028 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative
Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi
Abstract:
India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.Keywords: integrated service hub, India, oil gas, offshore supply base
Procedia PDF Downloads 1541027 Evidence from the Ashanti Region in Ghana: A Correlation Between Principal Instructional Leadership and School Performance in Senior High Schools
Authors: Blessing Dwumah Manu, Dawn Wallin
Abstract:
This study aims to explore school principal instructional leadership capabilities (Robinson, 2010) that support school performance in senior high schools in Ghana’s Northern Region. It explores the ways in which leaders (a) use deep leadership content knowledge to (b) solve complex school-based problems while (c) building relational trust with staff, parents, and students as they engage in the following instructional leadership dimensions: establishing goals and expectations; resourcing strategically; ensuring quality teaching; leading teacher learning and development and ensuring an orderly and safe environment (Patuawa et al, 2013). The proposed research utilizes a constructivist approach to explore the experiences of 18 school representatives (including principals, deputy principals, department heads, teachers, parents, and students) through an interview method.Keywords: instructional leadership, leadership content knowledge, solving complex problems, building relational trust and school performance
Procedia PDF Downloads 1131026 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers
Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli
Abstract:
The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.Keywords: building management, stratified low-cost housing, safety, health model
Procedia PDF Downloads 5611025 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1411024 Characterization of Onion Peels Extracts and Its Utilization in a Deep Fried Snack
Authors: Nabia Siddiqui, Tahira Mohsin Ali, Tanveer Abbas, Abid Hasnain
Abstract:
The present study proposed the use of different onion peel extracts in a South Asian snacks called ‘sew’. The polyphenols extracted from peels were initially analyzed for their antimicrobial potential and bioactive components following three different extraction systems. A relatively higher level of total phenolic content (TP), total flavonoid (TF) and antioxidant activity was observed for EWE (ethanol and water based) extracts followed by EAAE (ethanol and acetic acid) and WE (water extract) sample. Onion extracts showed ability to inhibit gram-positive as well as gram-negative bacteria. The incorporation of onion peel extracts in sew showed a marked increase in bioactive components. Besides bioactivity, sensory attributes, textural characteristics and storage stability of these snacks containing onion peel extract also significantly improved during the shelf study at ambient temperature for up to two months. Thus, these results justify the utilization of these plant polyphenols in fried snacks.Keywords: onion peels extract, South Asian snacks, antioxidant capacity, bioactivity
Procedia PDF Downloads 2491023 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability
Procedia PDF Downloads 3291022 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1071021 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers
Procedia PDF Downloads 2641020 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel
Authors: Seyed Abolhasan Naeini, M. Mortezaee
Abstract:
Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method
Procedia PDF Downloads 1551019 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation
Authors: Ziyda Abunada
Abstract:
In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores
Procedia PDF Downloads 2081018 Turbulent Election History: An Appraisal of Triggering Issues in Nigeria
Authors: Olajumoke Tolulope Esan, Odunayo Stephen Faluse
Abstract:
Nigeria’s electoral politics from independence has been tumultuous. Violence has continued to damage the conduct of almost all general elections in Nigeria, Thereby making free and fair elections an event that seems to be unachievable in the history of the nation’s politics. Apparently, electoral violence has subjected the Nation into stereotyped electoral procedures that are always dictated through powerful political Godfathers. However, the shameful act of riotous and tumultuous election processes has led to a political, national instability festering irregularities that manifest at different stages of the election, thus subjecting almost all elections carried out in Nigeria below the minimum democracy standard. Hence the fact that an average Nigerian is being deprived of his or her individual electoral rights should be enough to attract Global political interventions from the western world as Nigeria is part of the commonwealth countries and every Nigerians have the right to demand for posterity to be ensured by protecting individual rightful votes. Basically for elections to be termed democratic, it must be free and fair. In view of this, A deep understanding of this paper is a reflection on the tides of electoral violence and the alarming precipitating factors that make free and fair election almost unreachable in Nigeria.Keywords: democracy, election, electoral violence, political violence
Procedia PDF Downloads 4311017 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 821016 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 971015 Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria
Authors: Olu Ale, Olugbenga Aribisala, Sanmi Awopetu
Abstract:
Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested.Keywords: bacteriological, physicochemical, quality, wells, Ado Ekiti
Procedia PDF Downloads 3721014 Logic and Arabic Grammar Debates at Medieval Ages: A Quest for Muslim Contributions to Philosophical Development
Authors: Umar Sheikh Tahir
Abstract:
This paper focuses on the historiography of the relationship between Logic and Arabic grammar in the Muslim Medieval Ages (a period between 750 and 1100/ 150 and 500 Ah). This sensation appears in the famous debate among many others between grammarians represented by abū Sa'id al-Sairafī and logicians represented by abū Bishr Mattā on Logic and its validity. This incident took place in Baghdad around 932 AD. However, this study singlehandedly samples these debates as the base for the contributions of Islamic philosophers to philosophy of language as well as Epistemology. The question that shapes this research is: What is the intellectual development for Muslim thinkers to philosophy of language in regards to this debate? The current research addresses the Arabic grammar and logical debates by conducting historiography to emphasize on Islamic philosophers’ concerns about this issue. Consequently, this debate generates philosophical phenomena and resolutions in deep-thinking. In addition, these dialogues create a language impression for Philosophy in Islamic world from the period under study. Thereupon, Islamic philosophers’ discourse on this phenomenon serves as contribution to the Philosophy of Language.Keywords: debates, epistemology, grammar and grammarians, Islamic philosophy, philosophy language, logic
Procedia PDF Downloads 2271013 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus
Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan
Abstract:
Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing
Procedia PDF Downloads 131012 Investigating the Correlation Between Customer Satisfaction Components and Reaching Competitive Advantage, Using SEM Approach
Authors: Samaneh Pouyanfar, Michael Oliff
Abstract:
Nowadays, customer satisfaction and discovering the superior services, are counted as vital issues in most manufacturing and services companies. In these terms, gaining the competitive advantage by a business depends on products and services which are able to cause the customer satisfaction. Given the importance of this subject, this paper tries to investigate the correlation between components of customer satisfaction and gaining the competitive advantage by the business. For this purpose, after reviewing the research literature and doing deep interviews with authors and active people in the industry, based on the variables affecting the customer satisfaction and determinant components of business competitive advantage, research questionnaire was prepared. In sum, 96 executives of PARS-KHAZAR Company were asked in a survey. The results of P.L.S. Test for the research structure analysis showed that the measuring tools in terms of technical features, like convergent and divergent validity and compound reliability were very appropriate. Moreover the results showed that, the structure of products and factors related to foundation, has affected the competitive advantage performance positively and significantly; but the influence of structure of services and business environment on competitive advantage was not confirmed.Keywords: customer satisfaction, competitive advantage, products, foundation, home appliances
Procedia PDF Downloads 2751011 Service Blueprinting: A New Application for Evaluating Service Provision in the Hospice Sector
Authors: L. Sudbury-Riley, P. Hunter-Jones, L. Menzies, M. Pyrah, H. Knight
Abstract:
Just as manufacturing firms aim for zero defects, service providers strive to avoid service failures where customer expectations are not met. However, because services comprise unique human interactions, service failures are almost inevitable. Consequently, firms focus on service recovery strategies to fix problems and retain their customers for the future. Because a hospice offers care to terminally ill patients, it may not get the opportunity to correct a service failure. This situation makes the identification of what hospice users really need and want, and to ascertain perceptions of the hospice’s service delivery from the user’s perspective, even more important than for other service providers. A well-documented and fundamental barrier to improving end-of-life care is a lack of service quality measurement tools that capture the experiences of user’s from their own perspective. In palliative care, many quantitative measures are used and these focus on issues such as how quickly patients are assessed, whether they receive information leaflets, whether a discussion about their emotional needs is documented, and so on. Consequently, quality of service from the user’s perspective is overlooked. The current study was designed to overcome these limitations by adapting service blueprinting - never before used in the hospice sector - in order to undertake a ‘deep-dive’ to examine the impact of hospice services upon different users. Service blueprinting is a customer-focused approach for service innovation and improvement, where the ‘onstage’ visible service user and provider interactions must be supported by the ‘backstage’ employee actions and support processes. The study was conducted in conjunction with East Cheshire Hospice in England. The Hospice provides specialist palliative care for patients with progressive life-limiting illnesses, offering services to patients, carers and families via inpatient and outpatient units. Using service blueprinting to identify every service touchpoint, in-depth qualitative interviews with 38 in-patients, outpatients, visitors and bereaved families enabled a ‘deep-dive’ to uncover perceptions of the whole service experience among these diverse users. Interviews were recorded and transcribed, and thematic analysis of over 104,000 words of data revealed many excellent aspects of Hospice service. Staff frequently exceed people’s expectations. Striking gratifying comparisons to hospitals emerged. The Hospice makes people feel safe. Nevertheless, the technique uncovered many areas for improvement, including serendipity of referrals processes, the need for better communications with external agencies, improvements amid the daunting arrival and admissions process, a desperate need for more depression counselling, clarity of communication pertaining to actual end of life, and shortcomings in systems dealing with bereaved families. The study reveals that the adapted service blueprinting tool has major advantages of alternative quantitative evaluation techniques, including uncovering the complex nature of service user’s experiences in health-care service systems, highlighting more fully the interconnected configurations within the system and making greater sense of the impact of the service upon different service users. Unlike other tools, this in-depth examination reveals areas for improvement, many of which have already been implemented by the Hospice. The technique has potential to improve experiences of palliative and end-of-life care among patients and their families.Keywords: hospices, end-of-life-care, service blueprinting, service delivery
Procedia PDF Downloads 1961010 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 1021009 Using Kalosara Tradition for Conflict Resolution in Tolaki's People, Southeast Sulawesi
Authors: S. S. Ramis Rauf
Abstract:
This study will be explained the role of local wisdom in Tolakinese customary law on customs offense. The scope of this study was the informants who have a conflict located in Southeast Sulawesi. Then, their conflicts were resolved by using Kalosara tradition. The method of this study was a qualitative research by applying the techniques of deep interviews, revealing experiences and stories from informants, interviews customary leaders who are skilled and experienced in the customary settlement process of Kalosara tradition. Kalosara, as Tolakinese local wisdom, has contained in Tolakinese customary law. Kalosara was the application of customary law which was guided by Tolaki’s people when there was a problem. Knowledge and understanding of the customs have been conceived as something that comes from the ancestors. They created custom rules based on the law of Allah SWT for the elderly to do with full of awareness. Then, it was hereditary obeying by their children from generation to generation. The conflict occurred because of several things, namely bad words, aspersion, and other violations (such as harassment and affair). In custom settlement process, kalosara was done by using the enforcement of Tolakinese customary law that managed within an institution. It was called as Sara Wonua. It led by someone who was called as Pu'utobu that serves as a customary leader.Keywords: kalosara, conflict resolution, tradition, unity, diversity
Procedia PDF Downloads 2151008 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 1081007 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1881006 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 167