Search results for: clinical deterioration prediction
5205 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1215204 Genomic Analysis of Whole Genome Sequencing of Leishmania Major
Authors: Fatimazahrae Elbakri, Azeddine Ibrahimi, Meryem Lemrani, Dris Belghyti
Abstract:
Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy.Keywords: Leshmania major, cutaneous Leishmania, NGS, genomic, somy, variant calling
Procedia PDF Downloads 795203 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1265202 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students
Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara
Abstract:
BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to: cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer
Procedia PDF Downloads 1145201 The Role of the Renal Specialist Podiatrist
Authors: Clara Luwe, Oliver Harness, Helena Meally, Kim Martin, Alexandra Harrington
Abstract:
Background: The role of ‘Renal Specialist Podiatrist’ originated in 2022 due to prevailing evidence of patients with diabetes and end-stage renal disease (ESRD) on haemodialysis (HD) and active ulcerations that were at higher risk of rapid deterioration, foot-related hospital admissions, and lower limb amputations. This role started in April 2022 with the aim of screening all patients on haemodialysis and instigating preventative measures to reduce serious foot related complications. Methods: A comprehensive neurovascular foot assessment was completed to establish baseline vascular status and identify those with peripheral arterial disease (PAD) for all patients on HD. Individual’s foot risk was stratified, advice and education tailored and issued. Identifying all diabetes patients on HD as high-risk for diabetic foot complications. Major Findings: All patients screened revealed over half of the caseload had diabetes, and more than half had a clinical presentation of PAD. All those presenting with ulcerations had a diagnosis of diabetes. Of the presenting ulcerations, the majority of these ulcers predated the renal specialist post and were classified as severe >3 SINBAD Score. Since April’22, complications have been identified quicker, reducing the severity (SINBAD<3 or below), and have improved healing times, in line with the national average. During the eight months of the role being in place, we have seen a reduction in minor amputations and no major amputations. Conclusion: By screening all patients on haemodialysis and focusing on education, early recognition of complications, appropriate treatment, and timely onward referral, we can reduce the risk of foot Diabetic foot ulcerations and lower limb amputations. Having regular podiatry input to stratify and facilitate high-risk, active wound patients across different services has helped to keep these patients stable, prevent amputations, and reduce foot-related hospital admissions and mortality from foot-related disease. By improving the accessibility to a specialist podiatrist, patients felt able to raise concerns sooner. This has helped to implement treatment at the earliest possible opportunity, enabling the identification and healing of ulcers at an earlier and less complex stage (SINBAD <3), thus, preventing potential limb-threatening complications.Keywords: renal, podiatry, haemodialysis, prevention, early detection
Procedia PDF Downloads 855200 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4155199 Optochemical and Electrochemical Method to Study of Vegetable Oil Deterioration
Authors: A. V. Shelke, P. S. More
Abstract:
This research aimed to study the kinetic reaction of reused cooking oil and to find the optimum condition of its process. The feedstock was collected from the street sellers and also prepared at laboratory. From this research, it is found that the kinetic reaction of reused sunflower oil (auto-oxidation) is obtained in terms of variation of the absorption coefficient of unexposed sunflower oil as 0.05 which is very close to that of exposed sunflower oil 0.075. At room temperature, the optimum intensity obtained from optical absorption spectroscopy study is 0.267 for unexposed sunflower oil and 0.194 for exposed sunflower oil. However, results indicated that FTIR spectroscopy is accurate and precise enough for such determination. Free Fatty Acid (FFA% = 026), acid ~53% and safonication ~%192 get reduce in exposed oil was investigated.Keywords: friction, oxidation, sunflower oil, vegetable oils
Procedia PDF Downloads 3005198 Clinical Evidence of the Efficacy of ArtiCovid (Artemisia Annua Extract) on Covid-19 Patients in DRC
Authors: Md, MCS, MPH Munyangi Wa Nkola Jerome
Abstract:
The pandemic of COVID-19, a recently discovered contagious respiratory disease called SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2 Majority of people infected with SARS-CoV-2: Asymptomatic or mildly ill 14% of patients will develop severe illness requiring hospitalization and oxygen support, and 5% of these will be transferred to an intensive care unit, Urgent need for new treatments that can be used quickly to avoid transfer of patients to intensive care and death. Objective: To evaluate the clinical activity (efficacy) of ArtiCovid Hypothesis: Administration of 3 times a teaspoon per day by COVID patients (symptomatic, mild, or moderate forms) results in the disappearance of symptoms and improvement of biological parameters (including viral suppression). Clinical efficacy: the disappearance of clinical signs after seven days of treatment; reduction in the rate of patients transferred to intensive care units for mechanical ventilation and a decrease in mortality related to this infection Paraclinical efficacy: improvement of biological parameters (mainly d-dimer, CRP) Virological efficacy: suppression of the viral load after seven days of treatment (control test on the seventh day is negative) Pilot study using a standardized solution based on Artemisia annua (ARTICOVID) Obtaining authorization from the health authorities of the province of Central Kongo Recruitment of volunteer patients, mainly in the Kinkanda HospitalCarrying out tests before and after treatment as well as analyses before and after treatment. The protocol obtained the approval of the ethics committee 50 patients who completed the treatment were aged between 2 and 70 years, with an average age of 36 yearsMore half were male (56%). One in four patients was a health professional (25%) Of the 12 health professionals, 4 were physicians. For those who reported the date of onset of the disease, the average duration between the appearance of the first symptoms and the medical consultation was 5 days. The 50 patients put on ARTICOVID were discharged alive with CRP levels substantially normalizedAfter seven to eight days, the control test came back negative. This pilot study suggests that ARTICOVID may be effective against COVID-19 infection.Keywords: artiCovid, DRC, Covid-19, SARS_COV_2
Procedia PDF Downloads 1205197 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel
Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke
Abstract:
Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases
Procedia PDF Downloads 1065196 Nursing Students' Intention to Work in Hospice Care in the Future: A Cross-sectional Study
Authors: Merav Ben Natan, Moran Makhoul Khuri, Haviel Hammer, Maya Yarkoni
Abstract:
Background: Studies indicate that nursing students often rank hospice nursing among their least preferred career paths. Understanding factors influencing their intent to work in hospice care is essential for improving interest in this field. Aim: This study aimed to explore the relationship between nursing students' intention to pursue a career in hospice care and various factors, including their attitudes towards caring for dying patients, death anxiety, personal or professional experience with dying patients, and the type of nursing program they are enrolled in. Methods: In this cross-sectional study, 200 nursing students completed an online survey using the Frommelt Attitude Toward Care of the Dying Scale and the Turkish Death Anxiety Scale. The survey assessed students' intentions to work in hospice care and related variables. Results: Only 11% of participants expressed an interest in working in hospice care. Students in the accelerated program for non-nursing Bachelor of Arts graduates showed a higher intention to work in hospice care compared to those in the generic program (β = 0.27, P < .001). Conversely, completion of clinical experience in a medical ward was associated with a lower intention to work in hospice care (β = −0.21, P < .01). Conclusions: The findings suggest that nursing students in accelerated programs for non-nursing graduates are more likely to intend to work in hospice care. Enhanced experience and support are recommended to sustain their interest. Clinical experience in medical wards does not effectively substitute for hospice-specific clinical experience.Keywords: hospice nursing, nursing students, death anxiety, career intentions
Procedia PDF Downloads 275195 Verification of Simulated Accumulated Precipitation
Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze
Abstract:
Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting
Procedia PDF Downloads 1475194 Implications on the Training Program for Clinical Psychologists in South Korea
Authors: Chorom Baek, Sungwon Choi
Abstract:
The purpose of this study is to analyze the supervision system, and the training and continuing education of mental health professionals in USA, UK, Australia (New Zealand), Japan, and so on, and to deduce the implications of Korean mental health service system. In order to accomplish the purpose of this study, following methodologies were adopted: review on the related literatures, statistical data, the related manuals, online materials, and previous studies concerning issues in those countries for the past five years. The training program in Korea was compared with the others’ through this literature analysis. The induced matters were divided with some parts such as training program, continuing education, educational procedure, and curriculum. Based on the analysis, discussion and implications, the conclusion and further suggestion of this study are as follows: First, Korean Clinical Psychology of Association (KCPA) should become more powerful health main training agency for quality control. Second, actual authority of health main training agency should be a grant to training centers. Third, quality control of mental health professionals should be through standardization and systemization of promotion and qualification management. Fourth, education and training about work of supervisors and unification of criteria for supervision should be held. Fifth, the training program for mental health license should be offered by graduate schools. Sixth, legitimated system to protect the right of mental health trainees is needed. Seventh, regularly continuing education after licensed should be compulsory to keep the certification. Eighth, the training program in training centers should meet KCPA requirement. If not, KCPA can cancel the certification of the centers.Keywords: clinical psychology, Korea, mental health system, training program
Procedia PDF Downloads 2275193 Determines of Professional Competencies among Newly Registered Nurses in Teaching Hospital in Kingdom of Saudi Arabia
Authors: Rana Alkattan
Abstract:
Aim: This study aims to identify and analyze the factors predicting the professional clinical competency among newly recruited registered nurses. In addition, it aims to explore factors significantly correlated with high and low professional clinical competency score. Method: A descriptive analytical is applied in this study, cross-sectional which conducted between June 2012 and June 2013 at King Abdulaziz University Hospital, as one of the largest governmental university tertiary Hospital in Saudi Arabia. A survey questionnaire was designed to collect data. And then, data were analyzed using the SPSS. Results: A total of the 86 nurses provided valid responses. 69 were female and 17 were male. The majority of the participants in this study were married, from the Philippines, between 20-29 years old. The majority had certified university bachelor’s degree in nursing, as well as had prior experience in nursing between 1 to 5 years. There are two categories emerged from the data, which significantly correlated with nurses' professional competence and development. The first was the newly employed registered nurses demographic characteristic (correlation coefficients 0.154 to 0.470, P < 0.05), while the second was the list of studied environmental factors except 'job rotation factor' (correlation coefficients 0.122 to 0.540, P < 0.01). However, nurses' attitude including motivation and confidence were not associated with nurse's professional competency. Conclusion: that nurses' professional competence development is a process affected by certain personal demographic and environmental factors which will enable newly graduates nurses to provide safe effective patients' care and maintain their career responsibilities.Keywords: clinical, competence, development nurses professional, registered
Procedia PDF Downloads 3555192 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study
Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa
Abstract:
Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2
Procedia PDF Downloads 945191 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies
Authors: Amina Jibrin Ahmed
Abstract:
The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities
Procedia PDF Downloads 5185190 Audit on Compliance with Ottawa Ankle Rules in Ankle Radiograph Requests
Authors: Daud Muhammad
Abstract:
Introduction: Ankle radiographs are frequently requested in Emergency Departments (ED) for patients presenting with traumatic ankle pain. The Ottawa Ankle Rules (OAR) serve as a clinical guideline to determine the necessity of these radiographs, aiming to reduce unnecessary imaging. This audit was conducted to evaluate the adequacy of clinical information provided in radiograph requests in relation to the OAR. Methods: A retrospective analysis was performed on 50 consecutive ankle radiograph requests under ED clinicians' names for patients aged above 5 years, specifically excluding follow-up radiographs for known fractures. The study assessed whether the provided clinical information met the criteria outlined by the OAR. Results: The audit revealed that none of the 50 radiograph requests contained sufficient information to satisfy the Ottawa Ankle Rules. Furthermore, 10 out of the 50 radiographs (20%) identified fractures. Discussion: The findings indicate a significant lack of adherence to the OAR, suggesting potential overuse of radiography and unnecessary patient exposure to radiation. This non-compliance may also contribute to increased healthcare costs and resource utilization, as well as possible delays in diagnosis and treatment. Recommendations: To address these issues, the following recommendations are proposed: (1) Education and Training: Enhance awareness and training among ED clinicians regarding the OAR. (2) Standardised Request Forms: Implement changes to imaging request forms to mandate relevant information according to the OAR. (3) Scan Vetting: Promote awareness among radiographers to discuss the appropriateness of scan requests with clinicians. (4) Regular re-audits should be conducted to monitor improvements in compliance.Keywords: Ottawa ankle rules, ankle radiographs, emergency department, traumatic pain
Procedia PDF Downloads 455189 Epidemiological and Clinical Study of Childhood Hansens in a Tertiary Care Hospital
Authors: M. Shahana
Abstract:
Introduction: Leprosy (Hansens) is one of the major health problems in the developing countries. Sixty percent of the world leprosy cases are in India. According to the 2006 census India has about 54% of the total new cases detected globally. The National Leprosy Elimination Programme in 2012 has reported 9.7% of childhood leprosy. There are only few studies related to paediatric leprosy. Aim: To study the epidemiology and various clinical presentations of leprosy in the paediatric age group. Material and Methods: A 4-year prospective study was done in the out-patient department of dermatology in a tertiary care hospital. All the patients were screened for leprosy and children with a confirmed diagnosis of leprosy were taken up for the study. Results: Total of 321 cases of Hansens were recorded during this period out of which 41 were children. The male to female ratio was 2.72:1. A positive family history was found in 18%. Most of them presented with single hypopigmented hypoanesthetic patch. Conclusions: Children presented with more of Borderline tuberculoid type and reactions or deformities were less common.Keywords: Hansens, hypoaneasthetic patch, leprosy, reactions
Procedia PDF Downloads 1865188 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4895187 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis
Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool
Abstract:
Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis
Procedia PDF Downloads 1345186 Incorporating Information Gain in Regular Expressions Based Classifiers
Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler
Abstract:
A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.Keywords: information gain, regular expressions, smith-waterman algorithm, text classification
Procedia PDF Downloads 3205185 A Method for Clinical Concept Extraction from Medical Text
Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg
Abstract:
Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization
Procedia PDF Downloads 1355184 Hands on Tools to Improve Knowlege, Confidence and Skill of Clinical Disaster Providers
Authors: Lancer Scott
Abstract:
Purpose: High quality clinical disaster medicine requires providers working collaboratively to care for multiple patients in chaotic environments; however, many providers lack adequate training. To address this deficit, we created a competency-based, 5-hour Emergency Preparedness Training (EPT) curriculum using didactics, small-group discussion, and kinetic learning. The goal was to evaluate the effect of a short course on improving provider knowledge, confidence and skills in disaster scenarios. Methods: Diverse groups of medical university students, health care professionals, and community members were enrolled between 2011 and 2014. The course consisted of didactic lectures, small group exercises, and two live, multi-patient mass casualty incident (MCI) scenarios. The outcome measures were based on core competencies and performance objectives developed by a curriculum task force and assessed via trained facilitator observation, pre- and post-testing, and a course evaluation. Results: 708 participants completed were trained between November 2011 and August 2014, including 49.9% physicians, 31.9% medical students, 7.2% nurses, and 11% various other healthcare professions. 100% of participants completed the pre-test and 71.9% completed the post-test, with average correct answers increasing from 39% to 60%. Following didactics, trainees met 73% and 96% of performance objectives for the two small group exercises and 68.5% and 61.1% of performance objectives for the two MCI scenarios. Average trainee self-assessment of both overall knowledge and skill with clinical disasters improved from 33/100 to 74/100 (overall knowledge) and 33/100 to 77/100 (overall skill). The course assessment was completed by 34.3% participants, of whom 91.5% highly recommended the course. Conclusion: A relatively short, intensive EPT course can improve the ability of a diverse group of disaster care providers to respond effectively to mass casualty scenarios.Keywords: clinical disaster medicine, training, hospital preparedness, surge capacity, education, curriculum, research, performance, training, student, physicians, nurses, health care providers, health care
Procedia PDF Downloads 1925183 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 975182 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes
Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi
Abstract:
Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes
Procedia PDF Downloads 395181 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 1265180 Perception of Pre-Clinical Students towards Doctors Lifestyle
Authors: Shalinawati Ramli, Khairani Omar, Nurul Azmawati Mohamed, Zarini Ismail, Nur Syahrina Rahim, Nurul Hayati Chamhuri
Abstract:
Medical doctors’ work to prevent, diagnose, treat diseases, disorders, and injuries as well as prescribing medication. Many people are attracted to this profession because it gives them the opportunity to help others. Doctors’ improve quality of life by providing advice, healing physical ailments and performing complex surgeries. Medicine is a profession in which dedication to the wellbeing of others is of paramount importance. Balancing the requirements of work and personal life can be a struggle as the demand of work as a doctors’ is great. Perception and expectation of medical students regarding the lifestyle of doctors’ is important to ensure that they had made the right career choice. Thus, the aim of this study is to assess the perception of pre-clinical students regarding doctors’ lifestyle. This study is a cross-sectional study involving all third-year pre-clinical medical students at University Sains Islam Malaysia. A total of 81 students participated in this study. Participants were given a set of questionnaire consisting of demographic data, open-ended questions on their perception on doctors’ lifestyle of working environment, salary expectation and family life. Thematic analysis were used to analyse the data. The participants comprised 69% female and their age range was between 20-21 years old. Majority of them were from middle-income families. Majority of the students perceived that the doctors’ lifestyle would be busy (72%). Approximately 30% of them expected that the time schedule will be unpredictable, 21% mentioned that sacrifice is required and 16% perceived it as a tiring job. Other themes emerged were ‘requiring high commitment’ (6%), challenging (7%) and risky (4%). With regards to salary expectation, 48% expected reasonable salary, 33% high salary and 12% described it as 'not worth compared to the workload'. Majority of them perceived that their family life will be restricted (62%) and time management is important (33%). Only 15% mentioned that family members have to sacrifice and spousal understanding is important (7%). About 10% of them perceived that their family will not be affected by their profession. Majority of the medical students perceived a busy doctors’ lifestyle, reasonable salary and restricted family life. However, there was a significant proportion of them who required counselling for better preparation of their future lifestyle.Keywords: doctors lifestyle, pre-clinical students, perception, understanding
Procedia PDF Downloads 3075179 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites
Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler
Abstract:
Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.Keywords: failure, strength, stress concentration, unidirectional composites
Procedia PDF Downloads 1555178 Comparison of Incidence and Risk Factors of Early Onset and Late Onset Preeclampsia: A Population Based Cohort Study
Authors: Sadia Munir, Diana White, Aya Albahri, Pratiwi Hastania, Eltahir Mohamed, Mahmood Khan, Fathima Mohamed, Ayat Kadhi, Haila Saleem
Abstract:
Preeclampsia is a major complication of pregnancy. Prediction and management of preeclampsia is a challenge for obstetricians. To our knowledge, no major progress has been achieved in the prevention and early detection of preeclampsia. There is very little known about the clear treatment path of this disorder. Preeclampsia puts both mother and baby at risk of several short term- and long term-health problems later in life. There is huge health service cost burden in the health care system associated with preeclampsia and its complications. Preeclampsia is divided into two different types. Early onset preeclampsia develops before 34 weeks of gestation, and late onset develops at or after 34 weeks of gestation. Different genetic and environmental factors, prognosis, heritability, biochemical and clinical features are associated with early and late onset preeclampsia. Prevalence of preeclampsia greatly varies all over the world and is dependent on ethnicity of the population and geographic region. To authors best knowledge, no published data on preeclampsia exist in Qatar. In this study, we are reporting the incidence of preeclampsia in Qatar. The purpose of this study is to compare the incidence and risk factors of both early onset and late onset preeclampsia in Qatar. This retrospective longitudinal cohort study was conducted using data from the hospital record of Women’s Hospital, Hamad Medical Corporation (HMC), from May 2014-May 2016. Data collection tool, which was approved by HMC, was a researcher made extraction sheet that included information such as blood pressure during admission, socio demographic characteristics, delivery mode, and new born details. A total of 1929 patients’ files were identified by the hospital information management when they apply codes of preeclampsia. Out of 1929 files, 878 had significant gestational hypertension without proteinuria, 365 had preeclampsia, 364 had severe preeclampsia, and 188 had preexisting hypertension with superimposed proteinuria. In this study, 78% of the data was obtained by hospital electronic system (Cerner) and the remaining 22% was from patient’s paper records. We have gone through detail data extraction from 560 files. Initial data analysis has revealed that 15.02% of pregnancies were complicated with preeclampsia from May 2014-May 2016. We have analyzed difference in the two different disease entities in the ethnicity, maternal age, severity of hypertension, mode of delivery and infant birth weight. We have identified promising differences in the risk factors of early onset and late onset preeclampsia. The data from clinical findings of preeclampsia will contribute to increased knowledge about two different disease entities, their etiology, and similarities/differences. The findings of this study can also be used in predicting health challenges, improving health care system, setting up guidelines, and providing the best care for women suffering from preeclampsia.Keywords: preeclampsia, incidence, risk factors, maternal
Procedia PDF Downloads 1415177 The Mediation Impact of Demographic and Clinical Characteristics on the Relationship between Trunk Control and Quality of Life among the Sub-Acute Stroke Population: A Cross-Sectional Study
Authors: Kumar Gular, Viswanathan S., Mastour Saeed Alshahrani, Ravi Shankar Reddy, Jaya Shanker Tedla, Snehil Dixit, Ajay Prasad Gautam, Venkata Nagaraj Kakaraparthi, Devika Rani Sangadala
Abstract:
Background: Despite trunk control’s significant contribution to improving various functional activity components, the independent effect of trunk performance on quality of life is yet to be estimated in stroke survivors. Ascertaining the correlation between trunk control and self-reported quality of life while evaluating the effect of demographic and clinical characteristics on their relationship will guide concerned healthcare professionals in designing ideal rehabilitation protocols during the late sub-acute stroke stage of recovery. The aims of the present research were to (1) investigate the associations of trunk performance with self-rated quality of life and (2) evaluate if age, body mass index (BMI), and clinical characteristics mediate the relationship between trunk motor performance and perceived quality of life in the sub-acute stroke population. Methods: Trunk motor functions and quality of life among the late sub-acute stroke population aged 57.53 ± 6.42 years were evaluated through the trunk Impairment Scale (TIS) and Stroke specific quality of life (SSQOL) questionnaire, respectively. Pearson correlation coefficients and mediation analysis were performed to elucidate the relationship of trunk motor function with quality of life and determine the mediation impact of demographic and clinical characteristics on their association, respectively. Results: The current study observed significant correlations between trunk motor functions (TIS) and quality of life (SSQOL) with r=0.68 (p<0.001). Age, BMI, and type of stroke were detected as potential mediating factors in the association between trunk performance and quality of life. Conclusion: Validated associations between trunk motor functions and perceived quality of life among the late sub-acute stroke population emphasize the importance of comprehensive evaluation of trunk control. Rehabilitation specialists should focus on appropriate strategies to enhance trunk performance anticipating the potential effects of age, BMI, and type of stroke to improve health-related quality of life in stroke survivors.Keywords: sub-acute stroke, quality of life, functional independence, trunk control
Procedia PDF Downloads 785176 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 132