Search results for: Multiple Factorial Correspondence Analysis
30013 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 4630012 Using Internal Marketing to Investigate Nursing Staff Job Satisfaction and Turnover Intention
Authors: Tsung Chin Wu, Yu Chen Tsai, Rhay Hung Weng, Weir Sen Lin
Abstract:
In recent years, nursing staff’s lower job satisfaction has led to higher turnover rates, and high turnover rates not only cause medical institution costs to increase but also the quality of medical care to decrease. From the perspective of internal marketing, institution staffs are internal customers, and institutions should focus and meet the needs of staff, so that staff will strive to meet the needs of external customers and provide them with the required care. However, few previous studies have investigated the impact of internal staff satisfaction on external customers. Therefore, this study aimed to conduct job satisfaction surveys on internal staff to investigate the relationship between job satisfaction and quality of medical care through statistical analysis of the study results. The related study results may serve as a reference for healthcare managers. This study was conducted using a questionnaire and the subjects were nursing staff from four hospitals. A total of 600 questionnaires were distributed and 577 valid questionnaires were returned with a response rate of 96.1%. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The impact of internal marketing and job satisfaction on turnover intention of nursing staff was analyzed using descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. The study results showed that there was a significant difference between nursing staff’s job title and ‘professional participation’ and ‘shifts’. There was a significant difference between salary and ‘shifts’ and ‘turnover intention’, as well as between marriage and ‘remuneration’ and ‘turnover intention’. A significant difference was found between professional advancement and ‘professional growth’ and ‘type of leave’, as well as between division of service and ‘shifts’ and ‘turnover intention’. Pearson correlation analysis revealed a significant negative correlation between turnover intention and ‘internal marketing’, ‘interaction’, ‘professional participation’, ‘grasp of environment’, ‘remuneration’ and ‘shifts’, meaning that the higher the satisfaction, the lower the turnover intention. It is recommended that hospitals establish a comprehensive internal marketing mechanism to enhance staff satisfaction and in turn, reduce intention to resign, and the key to increasing job satisfaction is by establishing effective methods of internal communication.Keywords: internal marketing, job satisfaction, turnover intention, nursing staff
Procedia PDF Downloads 19130011 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process
Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman
Abstract:
Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption
Procedia PDF Downloads 43230010 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 9730009 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns
Authors: Wajdi Mohamed Ratemi
Abstract:
The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities
Procedia PDF Downloads 36730008 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk
Authors: Masbubul Ishtiaque Ahmed
Abstract:
Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity
Procedia PDF Downloads 28530007 Paper-Like and Battery Free Sensor Patches for Wound Monitoring
Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu
Abstract:
Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care
Procedia PDF Downloads 8130006 Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions
Authors: Mohammad Darbani, Jafar Masoud Sinaki, Armaghan Abedzadeh Neyshaburi
Abstract:
An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran.Keywords: irrigation cut off, forage millet, Nitroxin fertilizer, physiological properties
Procedia PDF Downloads 60930005 A Simulation Study on the Applicability of Overbooking Strategies in Inland Container Transport
Authors: S. Fazi, B. Behdani
Abstract:
The inland transportation of maritime containers entails the use of different modalities whose capacity is typically booked in advance. Containers may miss their scheduled departure time at a terminal for several reasons, such as delays, change of transport modes, multiple bookings pending. In those cases, it may be difficult for transport service providers to find last minute containers to fill the vacant capacity. Similarly to other industries, overbooking could potentially limit these drawbacks at the cost of a lower service level in case of actual excess of capacity in overbooked rides. However, the presence of multiple modalities may provide the required flexibility in rescheduling and limit the dissatisfaction of the shippers in case of containers in overbooking. This flexibility is known with the term 'synchromodality'. In this paper, we evaluate via discrete event simulation the application of overbooking. Results show that in certain conditions overbooking can significantly increase profit and utilization of high-capacity means of transport, such as barges and trains. On the other hand, in case of high penalty costs and limited no-show, overbooking may lead to an excessive use of expensive trucks.Keywords: discrete event simulation, flexibility, inland shipping, multimodality, overbooking
Procedia PDF Downloads 13430004 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 2130003 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia
Authors: Habib Alshuwaikhat, Nahid Hossain
Abstract:
Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation
Procedia PDF Downloads 49630002 Analysis of Improved Household Solid Waste Management System in Minna Metropolis, Niger State, Nigeria
Authors: M. A. Ojo, E. O. Ogbole, A. O. Ojo
Abstract:
This study analysed improved household solid waste management system in Minna metropolis, Niger state. Multi-staged sampling technique was used to administer 155 questionnaires to respondents, where Minna was divided into two income groups A and B based on the quality of the respondent’s houses. Primary data was collected with the aid of structured questionnaires and analysed using descriptive statistics to obtain results for the socioeconomic characteristics of respondents, types of waste generated and methods of disposing solid waste, the level of awareness and reliability of waste disposal methods as well as the willingness of households to pay for solid waste management in the area. The results revealed that majority of the household heads in the study area were male, 94.20% of the household heads fell between the ages of 21 and 50 and also that 96.80% of them had one form of formal education or the other. The results also revealed that 47.10% and 43.20% of the households generated food wastes and polymers respectively as a major constituent of waste disposed. The results of this study went further to reveal that 81.90% of the household heads were aware of the use of collection cans as a method of waste disposal while only 32.90% of them considered the method highly reliable. Multiple regression was used to determine the factors affecting the willingness of households to pay for waste disposal in the study area. The results showed that 76.10% of the respondents were willing to pay for solid waste management which indicates that households in Minna are concerned and willing to cater for their immediate environment. The multiple regression results revealed that age, income, environmental awareness and household expenditure have a positive and statistically significant relationship with the willingness of households to pay for waste disposal in the area while household size has a negative and statistically significant relationship with households’ willingness to pay. Based on these findings, it was recommended that more waste management services be made readily available to residents of Minna, waste collection service should be privatised to increase their effectiveness through increased competition and also that community participatory approach be used to create more environmental awareness amongst residents.Keywords: household, solid waste, management, WTP
Procedia PDF Downloads 29730001 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge
Authors: Reza Salehi, Peter L. Dold, Yves Comeau
Abstract:
The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design
Procedia PDF Downloads 27930000 Analysis of the Impact and Effectiveness of Government Funded Small-Scale Biogas Projects in Giyani Municipality, Limpopo
Authors: Lindiwe Ngcobo
Abstract:
The aim of the study is to describe and understand the benefits and costs of having biogas digesters at both household and society level. On a household level, the purpose is to understand how rural households benefit from the biogas digesters, for example, by converting animal and human waste through biogas digesters, and at what costs the benefits are realized. At a societal level, the purpose is to understand the costs and benefits of biogas digesters relative to the situation of rural communities who do not have flush toilets and have no appropriate waste disposal services while they incur electricity costs. Multiple regression analysis was used to determine the effect of biogas digesters on electricity availability and waste management. The results showed that beneficiaries spent less on electricity using household waste, and also waste disposal costs were eliminated from household expenses. A move to biogas energy production can be beneficial to rural households. It is economically and environmentally friendly. Small-scale farmers need to be introduced to agricultural innovations that can assist them in producing nutritious crops at a low cost. This can be a good opportunity to start an agribusiness that focuses on organic crops. Extensions and training institutions have to play a part in supporting households to develop entrepreneurial skills. Cost-benefit analysis showed that the benefits of biogas exceed the costs of the biogas projects. This implies that this technology should be promoted in rural households. Government financial incentives must be put in place to motivate a generation of organic Agri-prenuers.Keywords: Agri-prenuers, biogas digester, biogas energy, disposal costs
Procedia PDF Downloads 13629999 Investigation of the Effects of Visually Disabled and Typical Development Students on Their Multiple Intelligence by Applying Abacus and Right Brain Training
Authors: Sidika Di̇lşad Kaya, Ahmet Seli̇m Kaya, Ibrahi̇m Eri̇k, Havva Yaldiz, Yalçin Kaya
Abstract:
The aim of this study was to reveal the effects of right brain development on reading, comprehension, learning and concentration levels and rapid processing skills in students with low vision and students with standard development, and to explore the effects of right and left brain integration on students' academic success and the permanence of the learned knowledge. A total of 68 students with a mean age of 10.01±0.12 were included in the study, 58 of them with standard development, 9 partially visually impaired and 1 totally visually disabled student. The student with a total visual impairment could not participate in the reading speed test due to her total visual impairment. The following data were measured in the participant students before the project; Reading speed measurement in 1 minute, Reading comprehension questions, Burdon attention test, 50 questions of math quiz timed with a stopwatch. Participants were trained for 3 weeks, 5 days a week, for a total of two hours a day. In this study, right-brain developing exercises were carried out with the use of an abacus, and it was aimed to develop both mathematical and attention of students with questions prepared with numerical data taken from fairy tale activities. Among these problems, the study was supported with multiple-choice, 5W (what, where, who, why, when?), 1H (how?) questions along with true-false and fill-in-the-blank activities. By using memory cards, students' short-term memories were strengthened, photographic memory studies were conducted and their visual intelligence was supported. Auditory intelligence was supported by aiming to make calculations by using the abacus in the minds of the students with the numbers given aurally. When calculating the numbers by touching the real abacus, the development of students' tactile intelligence is enhanced. Research findings were analyzed in SPSS program, Kolmogorov Smirnov test was used for normality analysis. Since the variables did not show normal distribution, Wilcoxon test, one of the non-parametric tests, was used to compare the dependent groups. Statistical significance level was accepted as 0.05. The reading speed of the participants was 83.54±33.03 in the pre-test and 116.25±38.49 in the post-test. Narration pre-test 69.71±25.04 post-test 97.06±6.70; BURDON pretest 84.46±14.35 posttest 95.75±5.67; rapid math processing skills pretest 90.65±10.93, posttest 98.18±2.63 (P<0.05). It was determined that the pre-test and post-test averages of students with typical development and students with low vision were also significant for all four values (p<0.05). As a result of the data obtained from the participants, it is seen that the study was effective in terms of measurement parameters, and the findings were statistically significant. Therefore, it is recommended to use the method widely.Keywords: Abacus, reading speed, multiple intelligences, right brain training, visually impaired
Procedia PDF Downloads 18329998 MCERTL: Mutation-Based Correction Engine for Register-Transfer Level Designs
Authors: Khaled Salah
Abstract:
In this paper, we present MCERTL (mutation-based correction engine for RTL designs) as an automatic error correction technique based on mutation analysis. A mutation-based correction methodology is proposed to automatically fix the erroneous RTL designs. The proposed strategy combines the processes of mutation and assertion-based localization. The erroneous statements are mutated to produce possible fixes for the failed RTL code. A concurrent mutation engine is proposed to mitigate the computational cost of running sequential mutants operators. The proposed methodology is evaluated against some benchmarks. The experimental results demonstrate that our proposed method enables us to automatically locate and correct multiple bugs at reasonable time.Keywords: bug localization, error correction, mutation, mutants
Procedia PDF Downloads 28029997 Rt-Pcr Negative COVID-19 Infection in a Bodybuilding Competitor Using Anabolic Steroids: A Case Report
Authors: Mariana Branco, Nahida Sobrino, Cristina Neves, Márcia Santos, Afonso Granja, João Rosa Oliveira, Joana Costa, Luísa Castro Leite
Abstract:
This case reports a COVID-19 infection in an unvaccinated adult man with no history of COVID-19 and no relevant clinical history besides anabolic steroid use, undergoing weaning with tamoxifen after a bodybuilding competition. The patient presented a 4cm cervical mass 3 weeks after COVID-19 infection in his cohabitants. He was otherwise asymptomatic and tested negative to multiple RT-PCR tests. Nevertheless, the IgG COVID-19 antibody was positive, suggesting the previous infection. This report raises a potential link between anabolic steroid use and atypical COVID-19 onset. Objectives: The goals of this paper are to raise a potential link between anabolic steroid use and atypical COVID-19 onset but also to report an uncommon case of COVID-19 infection with consecutive negative gold standard tests. Methodology: The authors used CARE guidelines for case report writing. Introduction: This case reports a COVID-19 infection case in an unvaccinated adult man, with multiple serial negative reverse transcription polymerase chain reaction (RT-PCR) test results, presenting with single cervical lymphadenopathy. Although the association between COVID-19 and lymphadenopathy is well established, there are no cases with this presentation, and consistently negative RT-PCR tests have been reported. Methodologies: The authors used CARE guidelines for case report writing. Case presentation: This case reports a 28-year-old Caucasian man with no previous history of COVID-19 infection or vaccination and no relevant clinical history besides anabolic steroid use undergoing weaning with tamoxifendue to participation in a bodybuilding competition. He visits his primary care physician because of a large (4 cm) cervical lump, present for 3 days prior to the consultation. There was a positive family history for COVID-19 infection 3 weeks prior to the visit, during which the patient cohabited with the infected family members. The patient never had any previous clinical manifestation of COVID-19 infection and, despite multiple consecutive RT-PCR testing, never tested positive. The patient was treated with an NSAID and a broad-spectrum antibiotic, with little to no effect. Imagiological testing was performed via a cervical ultrasound, followed by a needle biopsy for histologic analysis. Serologic testing for COVID-19 immunity was conducted, revealing a positive Anti-SARS-CoV-2 IgG (Spike S1) antibody, suggesting the previous infection, given the unvaccinated status of our patient Conclusion: In patients with a positive epidemiologic context and cervical lymphadenopathy, physicians should still consider COVID-19 infection as a differential diagnosis, despite negative PCR testing. This case also raises a potential link between anabolic steroid use and atypical COVID-19 onset, never before reported in scientific literature.Keywords: COVID-19, cervical lymphadenopathy, anabolic steroids, primary care
Procedia PDF Downloads 11629996 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences
Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal
Abstract:
Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles
Procedia PDF Downloads 51029995 Key Aroma Compounds as Predictors of Pineapple Sensory Quality
Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth
Abstract:
Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).
Procedia PDF Downloads 5729994 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24029993 Hyper-Immunoglobulin E (Hyper-Ige) Syndrome In Skin Of Color: A Retrospective Single-Centre Observational Study
Authors: Rohit Kothari, Muneer Mohamed, Vivekanandh K., Sunmeet Sandhu, Preema Sinha, Anuj Bhatnagar
Abstract:
Introduction: Hyper-IgE syndrome is a rare primary immunodeficiency syndrome characterised by triad of severe atopic dermatitis, recurrent pulmonary infections, and recurrent staphylococcal skin infections. The diagnosis requires a high degree of suspicion, typical clinical features, and not mere rise in serum-IgE levels, which may be seen in multiple conditions. Genetic studies are not always possible in a resource poor setting. This study highlights various presentations of Hyper-IgE syndrome in skin of color children. Case-series: Our study had six children of Hyper-IgE syndrome aged twomonths to tenyears. All had onset in first ten months of life except one with a late-onset at two years. All had recurrent eczematoid rash, which responded poorly to conventional treatment, secondary infection, multiple episodes of hospitalisation for pulmonary infection, and raised serum IgE levels. One case had occasional vesicles, bullae, and crusted plaques over both the extremities. Genetic study was possible in only one of them who was found to have pathogenic homozygous deletions of exon-15 to 18 in DOCK8 gene following which he underwent bone marrow transplant (BMT), however, succumbed to lower respiratory tract infection two months after BMT and rest of them received multiple courses of antibiotics, oral/ topical steroids, and cyclosporine intermittently with variable response. Discussion: Our study highlights various characteristics, presentation, and management of this rare syndrome in children. Knowledge of these manifestations in skin of color will facilitate early identification and contribute to optimal care of the patients as representative data on the same is limited in literature.Keywords: absolute eosinophil count, atopic dermatitis, eczematous rash, hyper-immunoglobulin E syndrome, pulmonary infection, serum IgE, skin of color
Procedia PDF Downloads 13829992 Classification of Traffic Complex Acoustic Space
Abstract:
After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.Keywords: soundscape, traffic complex, cluster analysis, classification
Procedia PDF Downloads 25229991 The Sr-Nd Isotope Data of the Platreef Rocks from the Northern Limb of the Bushveld Igneous Complex: Evidence of Contrasting Magma Composition and Origin
Authors: Tshipeng Mwenze, Charles Okujeni, Abdi Siad, Russel Bailie, Dirk Frei, Marcelene Voigt, Petrus Le Roux
Abstract:
The Platreef is a platinum group element (PGE) deposit in the northern limb of the Bushveld Igneous Complex (BIC) which was emplaced as a series of mafic and ultramafic sills between the Main Zone (MZ) and the country rocks. The PGE mineralisation in the Platreef is hosted in different rock types, and its distribution and style vary with depth and along strike. This study contributes towards understanding the processes involved in the genesis of the Platreef. Twenty-four Platreef (2 harzburgites, 4 olivine pyroxenites, 17 feldspathic pyroxenites and 1 gabbronorite) and few MZ (1 gabbronorite and 1 leucogabbronorite) quarter core samples were collected from four drill cores (e.g., TN754, TN200, SS339, and OY482) and analysed for whole-rock Sr-Nd isotope data. The results show positive ɛNd values (+3.53 to +7.51) for harzburgites suggesting their parental magmas derived from the depleted Mantle. The remaining Platreef rocks have negative ɛNd values (-2.91 to -22.88) and show significant variations in Sr-Nd isotopic compositions. The first group of Platreef samples has relatively high isotopic compositions (ɛNd= -2.91 to -5.68; ⁸⁷Sr/⁸⁶Sri= 0.709177 - 0.711998). The second group of Platreef samples has Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.709816-0.712106) overlapping with samples of the first group but slightly lower ɛNd values (-7.44 to -8.39). Lastly, the third group of Platreef samples has low ɛNd values (-10.82 to -14.32) and low Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.707545-0.710042) than those from samples of the two Platreef groups mentioned above. There is, however, a Platreef sample with ɛNd value (-5.26) in range with the Platreef samples of the first group, but its Sr ratio (0.707281) is the lowest even when compared to samples of the third Platreef group. There are also five other Platreef samples which have either anomalous ɛNd or Sr ratios which make it difficult to assess their isotopic compositions relative to other samples. These isotopic variations for the Platreef samples indicate both multiple sources and multiple magma chambers where varying crustal contamination styles have operated during the evolution of these magmas prior their emplacements into the Platreef setting as sills. Furthermore, the MZ rocks have different Sr-Nd isotopic compositions (For OY482 gabbronorite [ɛNd= +0.65; ⁸⁷Sr/⁸⁶Sri= 0.711746]; for TN754 leucogabbronorite [ɛNd= -7.44; ⁸⁷Sr/⁸⁶Sri= 0.709322]) which do not only indicate different MZ magma chambers, but also different magmas from those of the Platreef. Although the Platreef is still considered a single stratigraphic unit in the northern limb of the BIC, its genesis involved multiple magmatic processes which evolved independently from each other.Keywords: crustal contamination styles, magma chambers, magma sources, multiple sills emplacement
Procedia PDF Downloads 16729990 The Effective Operations Competitive Advantages of Mobile Phone Service Providers across Countries: The Case of Middle East Region
Authors: Yazan Khalid Abed-Allah Migdadi
Abstract:
The aim of this study is identifying the effective operations competitive advantages of mobile phone service providers across countries. All Arab countries in the Middle East region were surveyed except Syria, and 27 out of 31 service providers were surveyed. Data collected from corporations’ annual reports, websites and other professional institutions published sources. Multiple linear regression analysis test was used to identify the relationship between operations competitive advantages and market share. The effective operations competitive advantages were; diversity of offers and service accessibilityKeywords: competitive advantage, mobile telecommunication operations, Middle East, service provider
Procedia PDF Downloads 39729989 Heroin Withdrawal, Prison and Multiple Temporalities
Authors: Ian Walmsley
Abstract:
The aim of this paper is to explore the influence of time and temporality on the experience of coming off heroin in prison. The presentation draws on qualitative data collected during a small-scale pilot study of the role of self-care in the process of coming off drugs in prison. Time and temporality emerged as a key theme in the interview transcripts. Drug dependent prisoners experience of time in prison has not been recognized in the research literature. Instead, the literature on prison time typically views prisoners as a homogenous group or tends to focus on the influence of aging and gender on prison time. Furthermore, there is a tendency in the literature on prison drug treatment and recovery to conceptualize drug dependent prisoners as passive recipients of prison healthcare, rather than active agents. In building on these gaps, this paper argues that drug dependent prisoners experience multiple temporalities which involve an interaction between the body-times of the drug dependent prisoner and the economy of time in prison. One consequence of this interaction is the feeling that they are doing, at this point in their prison sentence, double prison time. The second part of the argument is that time and temporality were a means through which they governed their withdrawing bodies. In addition, this paper will comment on the challenges of prison research in England.Keywords: heroin withdrawal, time and temporality, prison, body
Procedia PDF Downloads 27629988 Parametrical Analysis of Stain Removal Performance of a Washing Machine: A Case Study of Sebum
Authors: Ozcan B., Koca B., Tuzcuoglu E., Cavusoglu S., Efe A., Bayraktar S.
Abstract:
A washing machine is mainly used for removing any types of dirt and stains and also eliminating malodorous substances from textile surfaces. Stains originate from various sources from the human body to environmental contamination. Therefore, there are various methods for removing them. They are roughly classified into four different groups: oily (greasy) stains, particulate stains, enzymatic stains and bleachable (oxidizable) stains. Oily stains on clothes surfaces are a common result of being in contact with organic substances of the human body (e.g. perspiration, skin shedding and sebum) or by being exposed to an oily environmental pollutant (e.g. oily foods). Studies showed that human sebum is major component of oily soil found on the garments, and if it is aged under the several environmental conditions, it can generate obstacle yellow stains on the textile surface. In this study, a parametric study was carried out to investigate the key factors affecting the cleaning performance (specifically sebum removal performance) of a washing machine. These parameters are mechanical agitation percentage of tumble, consumed water and total washing period. A full factorial design of the experiment is used to capture all the possible parametric interactions using Minitab 2021 statistical program. Tests are carried out with commercial liquid detergent and 2 different types of sebum-soiled cotton and cotton + polyester fabrics. Parametric results revealed that for both test samples, increasing the washing time and the mechanical agitation could lead to a much better removal result of sebum. However, for each sample, the water amount had different outcomes. Increasing the water amount decreases the performance of cotton + polyester fabrics, while it is favorable for cotton fabric. Besides this, it was also discovered that the type of textile can greatly affect the sebum removal performance. Results showed that cotton + polyester fabrics are much easier to clean compared to cotton fabricKeywords: laundry, washing machine, low-temperature washing, cold wash, washing efficiency index, sustainability, cleaning performance, stain removal, oily soil, sebum, yellowing
Procedia PDF Downloads 14329987 Modelling Consistency and Change of Social Attitudes in 7 Years of Longitudinal Data
Authors: Paul Campbell, Nicholas Biddle
Abstract:
There is a complex, endogenous relationship between individual circumstances, attitudes, and behaviour. This study uses longitudinal panel data to assess changes in social and political attitudes over a 7-year period. Attitudes are captured with the question 'what is the most important issue facing Australia today', collected at multiple time points in a longitudinal survey of 2200 Australians. Consistency of attitudes, and factors predicting change over time, are assessed. The consistency of responses has methodological implications for data collection, specifically how often such questions ought to be asked of a population. When change in attitude is observed, this study assesses the extent to which individual demographic characteristics, personality traits, and broader societal events predict change.Keywords: attitudes, longitudinal survey analysis, personality, social values
Procedia PDF Downloads 13329986 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: subcontracting, optimal control, deterioration, simulation, production planning
Procedia PDF Downloads 57929985 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis
Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic
Abstract:
Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.Keywords: disability, functionality, multiple sclerosis, rehabilitation
Procedia PDF Downloads 12229984 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 119